La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Thorsten Pöschel
J. Phys. II France, 3 1 (1993) 27-40
Citations de cet article :
47 articles
Particle size segregation in granular pipe flow
Patric Müller, Artem Panchenko, Wing To Ku and Thorsten Pöschel Chaos: An Interdisciplinary Journal of Nonlinear Science 35 (4) (2025) https://doi.org/10.1063/5.0239010
Grain Reynolds Number Scale Effects in Dry Granular Slides
Matthew Kesseler, Valentin Heller and Barbara Turnbull Journal of Geophysical Research: Earth Surface 125 (1) (2020) https://doi.org/10.1029/2019JF005347
Cohesive granular materials composed of nonconvex particles
Baptiste Saint-Cyr, Farhang Radjai, Jean-Yves Delenne and Philippe Sornay Physical Review E 87 (5) (2013) https://doi.org/10.1103/PhysRevE.87.052207
Shear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction
Zahra Shojaaee, Lothar Brendel, János Török and Dietrich E. Wolf Physical Review E 86 (1) (2012) https://doi.org/10.1103/PhysRevE.86.011302
Steady flow of smooth, inelastic particles on a bumpy inclined plane: Hard and soft particle simulations
Anurag Tripathi and D. V. Khakhar Physical Review E 81 (4) (2010) https://doi.org/10.1103/PhysRevE.81.041307
Using the discrete element method to predict collision-scale behavior: A sensitivity analysis
Ben Freireich, Jim Litster and Carl Wassgren Chemical Engineering Science 64 (15) 3407 (2009) https://doi.org/10.1016/j.ces.2009.04.019
Discrete particle simulation of particulate systems: A review of major applications and findings
H.P. Zhu, Z.Y. Zhou, R.Y. Yang and A.B. Yu Chemical Engineering Science 63 (23) 5728 (2008) https://doi.org/10.1016/j.ces.2008.08.006
High Performance Computing in Science and Engineering ’06
Jens Harting, Martin Hecht and Hans Herrmann High Performance Computing in Science and Engineering ’06 83 (2007) https://doi.org/10.1007/978-3-540-36183-1_7
Wet granular materials
Namiko Mitarai and Franco Nori Advances in Physics 55 (1-2) 1 (2006) https://doi.org/10.1080/00018730600626065
Multifield Problems in Solid and Fluid Mechanics
Jens Harting, Martin Hecht, Hans J. Herrmann and Sean McNamara Lecture Notes in Applied and Computational Mechanics, Multifield Problems in Solid and Fluid Mechanics 28 113 (2006) https://doi.org/10.1007/978-3-540-34961-7_4
Transport phenomena and structuring in shear flow of suspensions near solid walls
A Komnik, J Harting and H J Herrmann Journal of Statistical Mechanics: Theory and Experiment 2004 (12) P12003 (2004) https://doi.org/10.1088/1742-5468/2004/12/P12003
Hard-sphere limit of soft-sphere model for granular materials: Stiffness dependence of steady granular flow
Namiko Mitarai and Hiizu Nakanishi Physical Review E 67 (2) 021301 (2003) https://doi.org/10.1103/PhysRevE.67.021301
Granular flow down a rough inclined plane: Transition between thin and thick piles
Leonardo E. Silbert, James W. Landry and Gary S. Grest Physics of Fluids 15 (1) 1 (2003) https://doi.org/10.1063/1.1521719
Analysis of Segregation Property of Burden Using 2-Dimensional Discrete Model
Shinroku MATSUZAKI and Yoshihiro TAGUCHI Tetsu-to-Hagane 88 (12) 823 (2002) https://doi.org/10.2355/tetsutohagane1955.88.12_823
Continuum theory of partially fluidized granular flows
Igor Aranson and Lev Tsimring Physical Review E 65 (6) 061303 (2002) https://doi.org/10.1103/PhysRevE.65.061303
Boundary effects and self-organization in dense granular flows
Leonardo E. Silbert, Gary S. Grest, Steven J. Plimpton and Dov Levine Physics of Fluids 14 (8) 2637 (2002) https://doi.org/10.1063/1.1487379
Granular flow down an inclined plane: Bagnold scaling and rheology
Leonardo Silbert, Deniz Ertaş, Gary Grest, et al. Physical Review E 64 (5) 051302 (2001) https://doi.org/10.1103/PhysRevE.64.051302
Driven granular gases with gravity
A. Baldassarri, U. Marconi, A. Puglisi and A. Vulpiani Physical Review E 64 (1) 011301 (2001) https://doi.org/10.1103/PhysRevE.64.011301
Instability of Dilute Granular Flows on Rough Slope
Namiko Mitarai and Hiizu Nakanishi Journal of the Physical Society of Japan 70 (10) 2809 (2001) https://doi.org/10.1143/JPSJ.70.2809
Movable cellular automata method for simulating materials with mesostructure
S.G. Psakhie, Y. Horie, G.P. Ostermeyer, et al. Theoretical and Applied Fracture Mechanics 37 (1-3) 311 (2001) https://doi.org/10.1016/S0167-8442(01)00079-9
Gravity-driven dense granular flows
D Ertaş, G. S Grest, T. C Halsey, D Levine and L. E Silbert Europhysics Letters (EPL) 56 (2) 214 (2001) https://doi.org/10.1209/epl/i2001-00508-7
Geomorphological Fluid Mechanics
Y. Wang and K. Hutter Lecture Notes in Physics, Geomorphological Fluid Mechanics 582 79 (2001) https://doi.org/10.1007/3-540-45670-8_4
Continuum description of avalanches in granular media
Igor Aranson and Lev Tsimring Physical Review E 64 (2) 020301 (2001) https://doi.org/10.1103/PhysRevE.64.020301
Stratified granular media beneath large slide blocks: Implications for mode of emplacement
Mark H. Anders, Einat Aharonov and John J. Walsh Geology 28 (11) 971 (2000) https://doi.org/10.1130/0091-7613(2000)28<971:SGMBLS>2.0.CO;2
Coefficient of restitution for elastic disks
Franz Gerl and Annette Zippelius Physical Review E 59 (2) 2361 (1999) https://doi.org/10.1103/PhysRevE.59.2361
Hysteretic transition between avalanches and continuous flow in rotated granular systems
Stefan J. Linz, Wolfgang Hager and Peter Hänggi Chaos: An Interdisciplinary Journal of Nonlinear Science 9 (3) 649 (1999) https://doi.org/10.1063/1.166438
Mathematics of Multiscale Materials
H. J. Herrmann The IMA Volumes in Mathematics and its Applications, Mathematics of Multiscale Materials 99 109 (1998) https://doi.org/10.1007/978-1-4612-1728-2_8
Positron Lifetime as a Nanoprobe for Free Volume Distribution in High Density Polyethylene–Carbon Black Conducting Composites
A. Patnaik, A. Patnaik, Z. Zhu, G. Yang and Y. Sun physica status solidi (a) 169 (1) 115 (1998) https://doi.org/10.1002/(SICI)1521-396X(199809)169:1<115::AID-PSSA115>3.0.CO;2-1
Molecular dynamics studies of grain segregation in sheared flow
D. Hirshfeld and D. C. Rapaport Physical Review E 56 (2) 2012 (1997) https://doi.org/10.1103/PhysRevE.56.2012
Stochastic Dynamics
Stefan J. Linz Lecture Notes in Physics, Stochastic Dynamics 484 306 (1997) https://doi.org/10.1007/BFb0105619
Granular dynamics simulations of two-dimensional heap formation
J. Baxter, U. Tüzün, J. Burnell and D. M. Heyes Physical Review E 55 (3) 3546 (1997) https://doi.org/10.1103/PhysRevE.55.3546
Impact stress induced displacement of powder beds in an inclined vessel
Tetsuo Akiyamam and Motomi Kono Advanced Powder Technology 8 (2) 113 (1997) https://doi.org/10.1016/S0921-8831(08)60470-7
Effect of periodic shear on avalanches in granular systems
Stefan J. Linz and Peter Hänggi Physica D: Nonlinear Phenomena 97 (4) 577 (1996) https://doi.org/10.1016/0167-2789(96)00044-9
Dilatant double shearing theory applied to granular chute flow
J. M. Hill and X. M. Zheng Acta Mechanica 118 (1-4) 97 (1996) https://doi.org/10.1007/BF01410510
Boundary effects for Couette flow of granular materials: Dynamical modelling
Xiao Ming Zheng and James M Hill Applied Mathematical Modelling 20 (1) 82 (1996) https://doi.org/10.1016/0307-904X(95)00105-S
Nonlinear Physics of Complex Systems
Hans J. Herrmann Lecture Notes in Physics, Nonlinear Physics of Complex Systems 476 23 (1996) https://doi.org/10.1007/BFb0105426
Molecular dynamics modelling of granular chute flow: density and velocity profiles
X.M. Zheng and J.M. Hill Powder Technology 86 (2) 219 (1996) https://doi.org/10.1016/0032-5910(96)03030-6
Collision properties of one-dimensional granular particles with internal degrees of freedom
Götz Giese, and Annette Zippelius Physical Review E 54 (5) 4828 (1996) https://doi.org/10.1103/PhysRevE.54.4828
Granular temperature: Experimental analysis
Irene Ippolito, Chrystèle Annic, Jacques Lemaître, Luc Oger and Daniel Bideau Physical Review E 52 (2) 2072 (1995) https://doi.org/10.1103/PhysRevE.52.2072
Discrete element simulation of granular flow in 2D and 3D hoppers: Dependence of discharge rate and wall stress on particle interactions
P.A. Langston, U. Tüzün and D.M. Heyes Chemical Engineering Science 50 (6) 967 (1995) https://doi.org/10.1016/0009-2509(94)00467-6
Lattice-BGK approach to simulating granular flows
M. -L. Tan, Y. H. Qian, I. Goldhirsch and S. A. Orszag Journal of Statistical Physics 81 (1-2) 87 (1995) https://doi.org/10.1007/BF02179970
Simulation studies of pressure and density wave propagations in vertically vibrated beds of granules
Keiko M. Aoki and Tetsuo Akiyama Physical Review E 52 (3) 3288 (1995) https://doi.org/10.1103/PhysRevE.52.3288
Third Granada Lectures in Computational Physics
H. J. Herrmann Lecture Notes in Physics, Third Granada Lectures in Computational Physics 448 67 (1995) https://doi.org/10.1007/3-540-59178-8_28
Numerical investigations of the evolution of sandpiles
Volkhard Buchholtz and Thorsten Pöschel Physica A: Statistical Mechanics and its Applications 202 (3-4) 390 (1994) https://doi.org/10.1016/0378-4371(94)90467-7
Size effects of slope dynamics in a 2-dimensional sandpile
H.J. Ruskin and A.L. McCarren Physica A: Statistical Mechanics and its Applications 207 (4) 477 (1994) https://doi.org/10.1016/0378-4371(94)90204-6
Anomalous energy dissipation in molecular-dynamics simulations of grains: The ‘‘detachment’’ effect
S. Luding, E. Clément, A. Blumen, J. Rajchenbach and J. Duran Physical Review E 50 (5) 4113 (1994) https://doi.org/10.1103/PhysRevE.50.4113
k
-5/3
Power Spectrum in Powder–Turbulent Flow in a Vibrated Bed: Numerical Results
Y.-H Taguchi Europhysics Letters (EPL) 24 (3) 203 (1993) https://doi.org/10.1209/0295-5075/24/3/008