La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Pippa Storey , Claude Cohen-Tannoudji
J. Phys. II France, 4 11 (1994) 1999-2027
Citations de cet article :
187 articles | Pages :
Sensitivity function analysis of gravitational wave detection with single-laser and large-momentum-transfer atomic sensors
Biao Tang, Bao-Cheng Zhang, Lin Zhou, Jin Wang and Ming-Sheng Zhan Research in Astronomy and Astrophysics 15 (3) 333 (2015) https://doi.org/10.1088/1674-4527/15/3/004
Full quantum mechanical analysis of atomic three-grating Mach–Zehnder interferometry
A.S. Sanz, M. Davidović and M. Božić Annals of Physics 353 205 (2015) https://doi.org/10.1016/j.aop.2014.11.012
Raman-pulse-duration effect in gravity gradiometers composed of two atom interferometers
Cheng-Gang Shao, De-Kai Mao, Min-Kang Zhou, et al. Physical Review A 92 (5) (2015) https://doi.org/10.1103/PhysRevA.92.053613
Dispersion cancellation in a triple Laue interferometer
Hartmut Lemmel Journal of Optics 16 (10) 105704 (2014) https://doi.org/10.1088/2040-8978/16/10/105704
The investigation of a μGal-level cold atom gravimeter for field applications
Bin Wu, Zhaoying Wang, Bing Cheng, et al. Metrologia 51 (5) 452 (2014) https://doi.org/10.1088/0026-1394/51/5/452
On the transition from the quantum to the classical regime for massive scalar particles: A spatiotemporal approach
Luca Lusanna and Massimo Pauri The European Physical Journal Plus 129 (8) (2014) https://doi.org/10.1140/epjp/i2014-14178-y
The Sagnac effect: 20 years of development in matter-wave interferometry
Brynle Barrett, Rémy Geiger, Indranil Dutta, Matthieu Meunier, Benjamin Canuel, Alexandre Gauguet, Philippe Bouyer and Arnaud Landragin Comptes Rendus. Physique 15 (10) 875 (2014) https://doi.org/10.1016/j.crhy.2014.10.009
Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers
Andreas Albrecht, Alex Retzker and Martin B. Plenio Physical Review A 90 (3) (2014) https://doi.org/10.1103/PhysRevA.90.033834
Apparent correction to the speed of light in a gravitational potential
J D Franson New Journal of Physics 16 (6) 065008 (2014) https://doi.org/10.1088/1367-2630/16/6/065008
Precision measurement of the Newtonian gravitational constant using cold atoms
G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino Nature 510 (7506) 518 (2014) https://doi.org/10.1038/nature13433
Test of the He-McKellar-Wilkens topological phase by atom interferometry. I. Theoretical discussion
S. Lepoutre, A. Gauguet, M. Büchner and J. Vigué Physical Review A 88 (4) (2013) https://doi.org/10.1103/PhysRevA.88.043627
Ting Yang, Zhaohui Hu, Lu Qi, Hwa-Yaw Tam, Kexin Xu, Hai Xiao, Jigui Zhu and Chun-Liu Zhao 9046 90460Z (2013) https://doi.org/10.1117/12.2036643
On the universality of free fall, the equivalence principle, and the gravitational redshift
A. M. Nobili, D. M. Lucchesi, M. T. Crosta, et al. American Journal of Physics 81 (7) 527 (2013) https://doi.org/10.1119/1.4798583
Redshift Controversy in Atom Interferometry: Representation Dependence of the Origin of Phase Shift
Wolfgang P. Schleich, Daniel M. Greenberger and Ernst M. Rasel Physical Review Letters 110 (1) (2013) https://doi.org/10.1103/PhysRevLett.110.010401
A representation-free description of the Kasevich–Chu interferometer: a resolution of the redshift controversy
Wolfgang P Schleich, Daniel M Greenberger and Ernst M Rasel New Journal of Physics 15 (1) 013007 (2013) https://doi.org/10.1088/1367-2630/15/1/013007
Experimental methods of molecular matter-wave optics
Thomas Juffmann, Hendrik Ulbricht and Markus Arndt Reports on Progress in Physics 76 (8) 086402 (2013) https://doi.org/10.1088/0034-4885/76/8/086402
Phases and relativity in atomic gravimetry
M-T Jaekel, B Lamine and S Reynaud Classical and Quantum Gravity 30 (6) 065006 (2013) https://doi.org/10.1088/0264-9381/30/6/065006
Colloquium: Quantum interference of clusters and molecules
Klaus Hornberger, Stefan Gerlich, Philipp Haslinger, Stefan Nimmrichter and Markus Arndt Reviews of Modern Physics 84 (1) 157 (2012) https://doi.org/10.1103/RevModPhys.84.157
Effect of trap anharmonicity on a free-oscillation atom interferometer
R. H. Leonard and C. A. Sackett Physical Review A 86 (4) (2012) https://doi.org/10.1103/PhysRevA.86.043613
Relativistic effects in atom and neutron interferometry and the differences between them
Daniel M. Greenberger, Wolfgang P. Schleich and Ernst M. Rasel Physical Review A 86 (6) (2012) https://doi.org/10.1103/PhysRevA.86.063622
Coherent matter wave inertial sensors for precision measurements in space
Y. Le Coq, J.A. Retter, S. Richard, A. Aspect and P. Bouyer Advances in Space Research 49 (2) 365 (2012) https://doi.org/10.1016/j.asr.2011.08.018
Testing the equivalence principle with atomic interferometry
Sven Herrmann, Hansjörg Dittus and Claus Lämmerzahl Classical and Quantum Gravity 29 (18) 184003 (2012) https://doi.org/10.1088/0264-9381/29/18/184003
On the evaluation of systematic effects in atom and corner-cube absolute gravimeters
Ch. Rothleitner and S. Svitlov Physics Letters A 376 (12-13) 1090 (2012) https://doi.org/10.1016/j.physleta.2012.02.019
Atom interferometry and the gravitational redshift
Supurna Sinha and Joseph Samuel Classical and Quantum Gravity 28 (14) 145018 (2011) https://doi.org/10.1088/0264-9381/28/14/145018
Path Integral Approach to Faraday's Law of Induction
Sami Mohammad Al-Jaber Journal of Electromagnetic Analysis and Applications 03 (06) 184 (2011) https://doi.org/10.4236/jemaa.2011.36030
Matter-gravity couplings and Lorentz violation
V. Alan Kostelecký and Jay D. Tasson Physical Review D 83 (1) (2011) https://doi.org/10.1103/PhysRevD.83.016013
Peter Wolf, Luc Blanchet, Christian J. Borde, Serge Reynaud, Christophe Salomon and Claude Cohen-Tannoudji 1 (2011) https://doi.org/10.1109/FCS.2011.5977899
Absolute Geodetic Rotation Measurement Using Atom Interferometry
J. K. Stockton, K. Takase and M. A. Kasevich Physical Review Letters 107 (13) (2011) https://doi.org/10.1103/PhysRevLett.107.133001
Does an atom interferometer test the gravitational redshift at the Compton frequency?
Peter Wolf, Luc Blanchet, Christian J Bordé, et al. Classical and Quantum Gravity 28 (14) 145017 (2011) https://doi.org/10.1088/0264-9381/28/14/145017
Analytical framework for dynamic light pulse atom interferometry at short interrogation times
Richard Stoner, David Butts, Joseph Kinast and Brian Timmons Journal of the Optical Society of America B 28 (10) 2418 (2011) https://doi.org/10.1364/JOSAB.28.002418
An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)
Jason M. Hogan, David M. S. Johnson, Susannah Dickerson, et al. General Relativity and Gravitation 43 (7) 1953 (2011) https://doi.org/10.1007/s10714-011-1182-x
Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter
G D'Agostino, S Merlet, A Landragin and F Pereira Dos Santos Metrologia 48 (5) 299 (2011) https://doi.org/10.1088/0026-1394/48/5/009
Equivalence Principle and Gravitational Redshift
Michael A. Hohensee, Steven Chu, Achim Peters and Holger Müller Physical Review Letters 106 (15) (2011) https://doi.org/10.1103/PhysRevLett.106.151102
Detecting inertial effects with airborne matter-wave interferometry
R. Geiger, V. Ménoret, G. Stern, et al. Nature Communications 2 (1) (2011) https://doi.org/10.1038/ncomms1479
Atom gravimeters and gravitational redshift
Peter Wolf, Luc Blanchet, Christian J. Bordé, et al. Nature 467 (7311) E1 (2010) https://doi.org/10.1038/nature09340
Optical lattices as waveguides and beam splitters for atom interferometry: An analytical treatment and proposal of applications
Tim Kovachy, Jason M. Hogan, David M. S. Johnson and Mark A. Kasevich Physical Review A 82 (1) (2010) https://doi.org/10.1103/PhysRevA.82.013638
Atom interferometry based on light pulses: Application to the high precision measurement of the ratio h/m and the determination of the fine structure constant
M. Cadoret, E. De Mirandes, P. Cladé, et al. The European Physical Journal Special Topics 172 (1) 121 (2009) https://doi.org/10.1140/epjst/e2009-01046-2
How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle
G Varoquaux, R A Nyman, R Geiger, et al. New Journal of Physics 11 (11) 113010 (2009) https://doi.org/10.1088/1367-2630/11/11/113010
Light-pulse atom interferometry in microgravity
G. Stern, B. Battelier, R. Geiger, et al. The European Physical Journal D 53 (3) 353 (2009) https://doi.org/10.1140/epjd/e2009-00150-5
Optics and interferometry with atoms and molecules
Alexander D. Cronin, Jörg Schmiedmayer and David E. Pritchard Reviews of Modern Physics 81 (3) 1051 (2009) https://doi.org/10.1103/RevModPhys.81.1051
Theory of atom optics: Feynman’s path integral approach (II)
Lü-bi Deng Frontiers of Physics in China 3 (1) 13 (2008) https://doi.org/10.1007/s11467-008-0003-5
Theoretical tools for atom-laser-beam propagation
J.-F. Riou, Y. Le Coq, F. Impens, et al. Physical Review A 77 (3) (2008) https://doi.org/10.1103/PhysRevA.77.033630
Lasers, Clocks and Drag-Free Control
Philippe Bouyer, Franck Pereira dos Santos, Arnaud Landragin and Christian J. Bordé Astrophysics and Space Science Library, Lasers, Clocks and Drag-Free Control 349 297 (2008) https://doi.org/10.1007/978-3-540-34377-6_15
Initial wavefunction dependence on atom interferometry phases
M. A. H. M. Jansen and K. A. H. van Leeuwen Applied Physics B 93 (2-3) 389 (2008) https://doi.org/10.1007/s00340-008-3215-z
General relativistic effects in atom interferometry
Savas Dimopoulos, Peter W. Graham, Jason M. Hogan and Mark A. Kasevich Physical Review D 78 (4) (2008) https://doi.org/10.1103/PhysRevD.78.042003
A proposal for a gradient magnetometer atom interferometer
J.P. Davis and F.A. Narducci Journal of Modern Optics 55 (19-20) 3173 (2008) https://doi.org/10.1080/09500340802468633
Эффект Саньяка в сверхтекучих жидкостях
Е. Вароко and Г. Вароко Uspekhi Fizicheskih Nauk 178 (2) 217 (2008) https://doi.org/10.3367/UFNr.0178.200802k.0217
COHERENT ATOM SOURCES FOR ATOM INTERFEROMETRY IN SPACE: THE ICE PROJECT
PHILIPPE BOUYER International Journal of Modern Physics D 16 (12b) 2431 (2007) https://doi.org/10.1142/S0218271807011231
Rotating matter-wave beam splitters and consequences for atom gyrometers
Charles Antoine Physical Review A 76 (3) (2007) https://doi.org/10.1103/PhysRevA.76.033609
Testing General Relativity with Atom Interferometry
Savas Dimopoulos, Peter W. Graham, Jason M. Hogan and Mark A. Kasevich Physical Review Letters 98 (11) (2007) https://doi.org/10.1103/PhysRevLett.98.111102
Geometric phase of atoms in a magnetic storage ring
P. Zhang and L. You Physical Review A 74 (6) (2006) https://doi.org/10.1103/PhysRevA.74.062110
Diffraction from moving gratings: negative energy solutions and relativistic effects
B.A. Kowalski and F.V. Kowalski Physics Letters A 352 (1-2) 59 (2006) https://doi.org/10.1016/j.physleta.2005.11.060
QUANTUM MECHANICS IN NONINERTIAL FRAMES WITH A MULTITEMPORAL QUANTIZATION SCHEME II: NONRELATIVISTIC PARTICLES
DAVID ALBA International Journal of Modern Physics A 21 (19n20) 3917 (2006) https://doi.org/10.1142/S0217751X0603254X
Gravitational wave detectors based on matter wave interferometers (MIGO) are no better than laser interferometers (LIGO)
Albert Roura, Dieter R. Brill, B. L. Hu, Charles W. Misner and William D. Phillips Physical Review D 73 (8) (2006) https://doi.org/10.1103/PhysRevD.73.084018
High-order inertial phase shifts for time-domain atom interferometers
K. Bongs, R. Launay and M.A. Kasevich Applied Physics B 84 (4) 599 (2006) https://doi.org/10.1007/s00340-006-2397-5
Coherent matter wave inertial sensors for precision measurements in space
Y. Le Coq, J.A. Retter, S. Richard, A. Aspect and P. Bouyer Applied Physics B 84 (4) 627 (2006) https://doi.org/10.1007/s00340-006-2363-2
Atom interferometer as a selective sensor of rotation or gravity
B. Dubetsky and M. A. Kasevich Physical Review A 74 (2) (2006) https://doi.org/10.1103/PhysRevA.74.023615
Navigation Error Analysis of Atom Interferometer Inertial Sensor
CHRISTOPHER JEKELI Navigation 52 (1) 1 (2005) https://doi.org/10.1002/j.2161-4296.2005.tb01726.x
Phase shifts in precision atom interferometry due to the localization of atoms and optical fields
A. Wicht, E. Sarajlic, J. M. Hensley and S. Chu Physical Review A 72 (2) (2005) https://doi.org/10.1103/PhysRevA.72.023602
The Gravitational Constant: Generalized Gravitational Theories and Experiments
C. S. Unnikrishnan The Gravitational Constant: Generalized Gravitational Theories and Experiments 381 (2004) https://doi.org/10.1007/978-1-4020-2242-5_18
Atom interferometer using two Stern-Gerlach magnets
K Rubin, M Eminyan, F Perales, et al. Laser Physics Letters 1 (4) 184 (2004) https://doi.org/10.1002/lapl.200310047
The State of the Planet: Frontiers and Challenges in Geophysics
Christopher Jekeli Geophysical Monograph Series, The State of the Planet: Frontiers and Challenges in Geophysics 150 135 (2004) https://doi.org/10.1029/150GM12
The Dick effect for an optical frequency standard
Audrey Quessada, Richard P Kovacich, Ir ne Courtillot, et al. Journal of Optics B: Quantum and Semiclassical Optics 5 (2) S150 (2003) https://doi.org/10.1088/1464-4266/5/2/373
Reaching the quantum noise limit in a high-sensitivity cold-atom inertial sensor
Florence Yver-Leduc, Patrick Cheinet, J r me Fils, et al. Journal of Optics B: Quantum and Semiclassical Optics 5 (2) S136 (2003) https://doi.org/10.1088/1464-4266/5/2/371
Computation of the phase induced by non-Newtonian gravitational potentials in atom interferometry
R Mathevet, R Delhuille and C Rizzo Classical and Quantum Gravity 19 (8) L37 (2002) https://doi.org/10.1088/0264-9381/19/8/101
An Emerging Concept of Biomolecular Dynamics and Function: Applications of NMR & MRI
Kazuo KUWATA Magnetic Resonance in Medical Sciences 1 (1) 27 (2002) https://doi.org/10.2463/mrms.1.27
Transverse mode of an atom laser
Th. Busch, M. Köhl, T. Esslinger and K. Mølmer Physical Review A 65 (4) 043615 (2002) https://doi.org/10.1103/PhysRevA.65.043615
High-precision gravity measurements using atom interferometry
A Peters, K Y Chung and S Chu Metrologia 38 (1) 25 (2001) https://doi.org/10.1088/0026-1394/38/1/4
Coherent atomic matter waves
S. Chu Les Houches - Ecole d’Ete de Physique Theorique, Coherent atomic matter waves 72 317 (2001) https://doi.org/10.1007/3-540-45338-5_4
The Hydrogen Atom
Caroline Champenois, Matthias Büchner, Rémi Delhuille, et al. Lecture Notes in Physics, The Hydrogen Atom 570 554 (2001) https://doi.org/10.1007/3-540-45395-4_38
P. Wolf, S. Bize, A. Clairon, A. Landragin, P. Laurent, P. Lemonde and C.J. Borde 37 (2001) https://doi.org/10.1109/FREQ.2001.956157
Atomic spatial coherence monitoring and engineering with magnetic fields
E. Maréchal, R. Long, T. Miossec, et al. Physical Review A 62 (5) (2000) https://doi.org/10.1103/PhysRevA.62.053603
Rotation sensing with a dual atom-interferometer Sagnac gyroscope
T L Gustavson, A Landragin and M A Kasevich Classical and Quantum Gravity 17 (12) 2385 (2000) https://doi.org/10.1088/0264-9381/17/12/311
Genericity property of comoving potentials
R. Mathevet, J. Robert and J. Baudon Physical Review A 61 (3) (2000) https://doi.org/10.1103/PhysRevA.61.033604
Upravlenie neitral'nymi chastitsami
Steven Chu Uspekhi Fizicheskih Nauk 169 (3) 274 (1999) https://doi.org/10.3367/UFNr.0169.199903d.0274
Atomic interferometry
J Baudon, R Mathevet and J Robert Journal of Physics B: Atomic, Molecular and Optical Physics 32 (15) R173 (1999) https://doi.org/10.1088/0953-4075/32/15/201
Single and double interaction zone with comoving fields in Stern-Gerlach atom interferometry
K Brodsky, R Mathevet, B. J Lawson-Daku, J Baudon and J Robert Europhysics Letters (EPL) 44 (2) 137 (1998) https://doi.org/10.1209/epl/i1998-00447-3
Double atom interferometer
R. Mathevet, K. Brodsky, J. Baudon, et al. Physical Review A 58 (5) 4039 (1998) https://doi.org/10.1103/PhysRevA.58.4039
Time on a rotating platform
F. Goy and F. Selleri Foundations of Physics Letters 10 (1) 17 (1997) https://doi.org/10.1007/BF02764117
Atom Interferometry
Uwe Sterr, Klaus Sengstock, Wolfgang Ertmer, Fritz Riehle and Jürgen Helmcke Atom Interferometry 293 (1997) https://doi.org/10.1016/B978-012092460-8/50009-6
Diffuse atomic reflection at a rough mirror
Carsten Henkel, Klaus Mølmer, Robin Kaiser, et al. Physical Review A 55 (2) 1160 (1997) https://doi.org/10.1103/PhysRevA.55.1160
Atom Interferometry
Jörg Schmiedmayer, Michael S. Chapman, Christopher R. Ekstrom, et al. Atom Interferometry 1 (1997) https://doi.org/10.1016/B978-012092460-8/50002-3
Precision Rotation Measurements with an Atom Interferometer Gyroscope
T. L. Gustavson, P. Bouyer and M. A. Kasevich Physical Review Letters 78 (11) 2046 (1997) https://doi.org/10.1103/PhysRevLett.78.2046
Scattering of neutral atoms by the evanescent field around an optical fibre
B Pape, E Bonderup and K Mølmer Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 9 (3) 419 (1997) https://doi.org/10.1088/1355-5111/9/3/012
Atom Interferometry
John F. Clauser and Shifang Li Atom Interferometry 121 (1997) https://doi.org/10.1016/B978-012092460-8/50004-7
Coherence and Quantum Optics VII
David E. Pritchard, Michael S. Chapman, Troy D. Hammond, et al. Coherence and Quantum Optics VII 133 (1996) https://doi.org/10.1007/978-1-4757-9742-8_18
Photon Scattering from Atoms in an Atom Interferometer: Coherence Lost and Regained
Michael S. Chapman, Troy D. Hammond, Alan Lenef, et al. Physical Review Letters 75 (21) 3783 (1995) https://doi.org/10.1103/PhysRevLett.75.3783
Pages :
101 à 187 sur 187 articles