Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Dynamic regimes in planetary cores: τ–ℓ diagrams

Henri-Claude Nataf and Nathanaël Schaeffer
Comptes Rendus. Géoscience 356 (G1) 1 (2024)
https://doi.org/10.5802/crgeos.256

A Ship-Based Characterization of Coherent Boundary-Layer Structures Over the Lifecycle of a Marine Cold-Air Outbreak

Christiane Duscha, Christopher Barrell, Ian A. Renfrew, et al.
Boundary-Layer Meteorology 183 (3) 355 (2022)
https://doi.org/10.1007/s10546-022-00692-y

On the universality of anomalous scaling exponents of structure functions in turbulent flows

E.-W. Saw, P. Debue, D. Kuzzay, F. Daviaud and B. Dubrulle
Journal of Fluid Mechanics 837 657 (2018)
https://doi.org/10.1017/jfm.2017.848

Intermittency of quantum turbulence with superfluid fractions from 0% to 96%

E. Rusaouen, B. Chabaud, J. Salort and P.-E. Roche
Physics of Fluids 29 (10) (2017)
https://doi.org/10.1063/1.4991558

Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

Preben Buchhave and Clara M. Velte
Physics of Fluids 29 (8) (2017)
https://doi.org/10.1063/1.4999102

The coupling between inner and outer scales in a zero pressure boundary layer evaluated using a Hölder exponent framework

Christopher J Keylock, Bharath Ganapathasubramani, Jason Monty, Nick Hutchins and Ivan Marusic
Fluid Dynamics Research 48 (2) 021405 (2016)
https://doi.org/10.1088/0169-5983/48/2/021405

A statistical mechanics framework for the large-scale structure of turbulent von Kármán flows

Simon Thalabard, Brice Saint-Michel, Eric Herbert, François Daviaud and Bérengère Dubrulle
New Journal of Physics 17 (6) 063006 (2015)
https://doi.org/10.1088/1367-2630/17/6/063006

Modelling and analysis of turbulent datasets using Auto Regressive Moving Average processes

Davide Faranda, Flavio Maria Emanuele Pons, Bérengère Dubrulle, et al.
Physics of Fluids 26 (10) (2014)
https://doi.org/10.1063/1.4896637

Numerical study of impeller-driven von Kármán flows via a volume penalization method

S Kreuzahler, D Schulz, H Homann, Y Ponty and R Grauer
New Journal of Physics 16 (10) 103001 (2014)
https://doi.org/10.1088/1367-2630/16/10/103001

Fluid motion mediates biochemical composition and physiological aspects in the green alga Dunaliella primolecta Butcher

Anwar Chengala, Miki Hondzo and Douglas G. Mashek
Limnology and Oceanography: Fluids and Environments 3 (1) 74 (2013)
https://doi.org/10.1215/21573689-2326826

The flow structure in the wake of a fractal fence and the absence of an “inertial regime”

C. J. Keylock, K. Nishimura, M. Nemoto and Y. Ito
Environmental Fluid Mechanics 12 (3) 227 (2012)
https://doi.org/10.1007/s10652-011-9233-0

Stratified Inertial Subrange Inferred from In Situ Measurements in the Bottom Boundary Layer of the Rockall Channel

Pascale Bouruet-Aubertot, Hans van Haren and M. Pascale Lelong
Journal of Physical Oceanography 40 (11) 2401 (2010)
https://doi.org/10.1175/2010JPO3957.1

The von Kármán Sodium experiment: Turbulent dynamical dynamos

Romain Monchaux, Michael Berhanu, Sébastien Aumaître, et al.
Physics of Fluids 21 (3) (2009)
https://doi.org/10.1063/1.3085724

Supercritical transition to turbulence in an inertially driven von Kármán closed flow

FLORENT RAVELET, ARNAUD CHIFFAUDEL and FRANÇOIS DAVIAUD
Journal of Fluid Mechanics 601 (2008)
https://doi.org/10.1017/S0022112008000712

Flow Dynamics in Eccentrically Rotating Flasks Used for Dispersant Effectiveness Testing

Vikram J. Kaku, Michel C. Boufadel, Albert D. Venosa and James Weaver
Environmental Fluid Mechanics 6 (4) 385 (2006)
https://doi.org/10.1007/s10652-006-0003-3

Characterization of an experimental turbulent vortex in the physical and spectral spaces

Yannis Cuypers, Agnès Maurel and Philippe Petitjeans
Journal of Turbulence 7 N7 (2006)
https://doi.org/10.1080/14685240600581974

Acoustical technique for Lagrangian velocity measurement

Nicolas Mordant, Pascal Metz, Jean-François Pinton and Olivier Michel
Review of Scientific Instruments 76 (2) 025105 (2005)
https://doi.org/10.1063/1.1844452

On the rapid increase of intermittency in the near-dissipation range of fully developed turbulence

L. Chevillard, B. Castaing and E. Lévêque
The European Physical Journal B 45 (4) 561 (2005)
https://doi.org/10.1140/epjb/e2005-00214-4

Reynolds dependence of third-order velocity structure functions

Yves Gagne, Bernard Castaing, Christophe Baudet and Yann Malécot
Physics of Fluids 16 (2) 482 (2004)
https://doi.org/10.1063/1.1639013

The statistics of power injected in a closed turbulent flow: Constant torque forcing versus constant velocity forcing

Jean Hugues Titon and Olivier Cadot
Physics of Fluids 15 (3) 625 (2003)
https://doi.org/10.1063/1.1539856

Scaling in three-dimensional and quasi-two-dimensional rotating turbulent flows

Charles N. Baroud, Brendan B. Plapp, Harry L. Swinney and Zhen-Su She
Physics of Fluids 15 (8) 2091 (2003)
https://doi.org/10.1063/1.1577120

Magnetohydrodynamics measurements in the von Kármán sodium experiment

Mickaël Bourgoin, Louis Marié, François Pétrélis, et al.
Physics of Fluids 14 (9) 3046 (2002)
https://doi.org/10.1063/1.1497376

Time-resolved tracking of a sound scatterer in a complex flow: Nonstationary signal analysis and applications

Nicolas Mordant, Jean-François Pinton and Olivier Michel
The Journal of the Acoustical Society of America 112 (1) 108 (2002)
https://doi.org/10.1121/1.1477932

Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence

Arkady Tsinober, Prakash Vedula and P. K. Yeung
Physics of Fluids 13 (7) 1974 (2001)
https://doi.org/10.1063/1.1375143

Turbulence intermittency and burst properties in tokamak scrape-off layer

G. Y. Antar, P. Devynck, X. Garbet and S. C. Luckhardt
Physics of Plasmas 8 (5) 1612 (2001)
https://doi.org/10.1063/1.1363663

Experimental study of Taylor’s hypothesis in a turbulent soap film

Andrew Belmonte, Brian Martin and Walter I. Goldburg
Physics of Fluids 12 (4) 835 (2000)
https://doi.org/10.1063/1.870339

Vortex Structure and Dynamics

Catherine Simand, Francesca Chillà and Jean-Françcois Pinton
Lecture Notes in Physics, Vortex Structure and Dynamics 555 291 (2000)
https://doi.org/10.1007/3-540-44535-8_20

Temporal surrogates of spatial turbulent statistics: The Taylor hypothesis revisited

Victor L’vov, Anna Pomyalov and Itamar Procaccia
Physical Review E 60 (4) 4175 (1999)
https://doi.org/10.1103/PhysRevE.60.4175

Some new features of the passive scalar mixing in a turbulent flow

L. Danaila, P. Le Gal, F. Anselmet, F. Plaza and J. F. Pinton
Physics of Fluids 11 (3) 636 (1999)
https://doi.org/10.1063/1.869935

Intermittency and coherent structures in a swirling flow: A wavelet analysis of joint pressure and velocity measurements

Pierre Chainais, Patrice Abry and Jean-François Pinton
Physics of Fluids 11 (11) 3524 (1999)
https://doi.org/10.1063/1.870210

On velocity and passive scalar scaling laws in a turbulent swirling flow

J.-F. Pinton, F. Plaza, L. Danaila, P. Le Gal and F. Anselmet
Physica D: Nonlinear Phenomena 122 (1-4) 187 (1998)
https://doi.org/10.1016/S0167-2789(98)00185-7

Spatial properties of velocity structure functions in turbulent wake flows

E. Gaudin, B. Protas, S. Goujon-Durand, J. Wojciechowski and J. Wesfreid
Physical Review E 57 (1) R9 (1998)
https://doi.org/10.1103/PhysRevE.57.R9

Experimental study of the evolution of a velocity perturbation in fully developed turbulence

R. Camussi, S. Ciliberto and C. Baudet
Physical Review E 56 (5) 6181 (1997)
https://doi.org/10.1103/PhysRevE.56.6181

Small-Scale Structures in Three-Dimensional Hydrodynamic and Magnetohydrodynamic Turbulence

O. Cadot
Lecture Notes in Physics, Small-Scale Structures in Three-Dimensional Hydrodynamic and Magnetohydrodynamic Turbulence 462 89 (1996)
https://doi.org/10.1007/BFb0102403

Study of the von Kármán flow between coaxial corotating disks

R. Labbé, J.‐F. Pinton and S. Fauve
Physics of Fluids 8 (4) 914 (1996)
https://doi.org/10.1063/1.868871