Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Linear and weakly nonlinear stability analysis on a rotating anisotropic ferrofluid layer

Amit Mahajan and Hemant Parashar
Physics of Fluids 32 (2) (2020)
https://doi.org/10.1063/1.5133102

WITHDRAWN: Linear stability analysis of Benard-Marangoni ferroconvection in presence of vertical throughflow

R. Arunkumar and Kavyashree
Materials Today: Proceedings (2020)
https://doi.org/10.1016/j.matpr.2020.11.324

Penetrative convection in magnetic nanofluids via internal heating

Amit Mahajan and Mahesh Kumar Sharma
Physics of Fluids 29 (3) (2017)
https://doi.org/10.1063/1.4977091

Retarding the growth of the Rosensweig instability unveils a new scaling regime

Adrian Lange, Christian Gollwitzer, Robin Maretzki, Ingo Rehberg and Reinhard Richter
Physical Review E 93 (4) (2016)
https://doi.org/10.1103/PhysRevE.93.043106

Effect of temperature-dependent viscosity on the onset of Bénard–Marangoni ferroconvection in a ferrofluid saturated porous layer

C. E. Nanjundappa, B. Savitha, B. Arpitha Raju and I. S. Shivakumara
Acta Mechanica 225 (3) 835 (2014)
https://doi.org/10.1007/s00707-013-0999-7

Onset of Bénard–Marangoni ferroconvection with a convective surface boundary condition: The effects of cubic temperature profile and MFD viscosity

C.E. Nanjundappa, I.S. Shivakumara and B. Savitha
International Communications in Heat and Mass Transfer 51 39 (2014)
https://doi.org/10.1016/j.icheatmasstransfer.2013.11.010

Onset of Marangoni-Bénard Ferroconvection with Temperature Dependent Viscosity

C. E. Nanjundappa, I. S. Shivakumara and R. Arunkumar
Microgravity Science and Technology 25 (2) 103 (2013)
https://doi.org/10.1007/s12217-012-9330-9

On the penetrative Benard–Marangoni convection in a ferromagnetic fluid layer

C.E. Nanjundappa, I.S. Shivakumara and K. Srikumar
Aerospace Science and Technology 27 (1) 57 (2013)
https://doi.org/10.1016/j.ast.2012.06.007

Bénard-Marangoni instability in a viscoelastic ferrofluid

David Laroze, Javier Martinez-Mardones and Harald Pleiner
The European Physical Journal Special Topics 219 (1) 71 (2013)
https://doi.org/10.1140/epjst/e2013-01782-6

Onset of Benard-Marangoni Ferroconvection with Internal Heat Generation

C. E. Nanjundappa, I. S. Shivakumara and R. Arunkumar
Microgravity Science and Technology 23 (1) 29 (2011)
https://doi.org/10.1007/s12217-010-9218-5

Bénard–Marangoni ferroconvection with magnetic field dependent viscosity

C.E. Nanjundappa, I.S. Shivakumara and R. Arunkumar
Journal of Magnetism and Magnetic Materials 322 (15) 2256 (2010)
https://doi.org/10.1016/j.jmmm.2010.02.021

Thermal Marangoni Instability and Magnetic Pressure for a Thin Ferrofluid Layer

Marcel Hennenberg, Slavtcho Slavtchev and Boris Weyssow
Annals of the New York Academy of Sciences 1161 (1) 361 (2009)
https://doi.org/10.1111/j.1749-6632.2008.04064.x

Modelling of an Oscillatory Magnetic Field Action on a Ferrofluid Layer

M. Hennenberg, S. Slavtchev and B. Weyssow
Microgravity Science and Technology 21 (S1) 45 (2009)
https://doi.org/10.1007/s12217-009-9114-z

Template free, large scale synthesis of cobalt nanowires using magnetic fields for alignment

E K Athanassiou, P Grossmann, R N Grass and W J Stark
Nanotechnology 18 (16) 165606 (2007)
https://doi.org/10.1088/0957-4484/18/16/165606

Growth of surface undulations at the Rosensweig instability

Holger Knieling, Reinhard Richter, Ingo Rehberg, Gunar Matthies and Adrian Lange
Physical Review E 76 (6) (2007)
https://doi.org/10.1103/PhysRevE.76.066301

Solution of the adjoint problem for instabilities with a deformable surface: Rosensweig and Marangoni instability

Stefan Bohlius, Harald Pleiner and Helmut R. Brand
Physics of Fluids 19 (9) (2007)
https://doi.org/10.1063/1.2757709

Steady flows of a laterally heated ferrofluid layer: Influence of inclined strong magnetic field and gravity level

M. Hennenberg, B. Weyssow, S. Slavtchev, Th. Desaive and B. Scheid
Physics of Fluids 18 (9) (2006)
https://doi.org/10.1063/1.2353879

Gravity Level Influence on a Laterally Heated Ferrofluid Submitted to an Oblique Strong Magnetic Field

Marcel Hennenberg, Boris Weyssow, S. Slavtchev, V. Aleksandrov and B. Scheid
Zeitschrift für Physikalische Chemie 220 (2) 199 (2006)
https://doi.org/10.1524/zpch.2006.220.2.199

Linear Marangoni and Rayleigh-Taylor instabilities of a ferrofluid thick layer in a vertical magnetic field

M. Hennenberg, B. Weyssow, S. Slavtchev and V. Alexandrov
Journal of Non-Equilibrium Thermodynamics 30 (3) (2005)
https://doi.org/10.1515/JNETDY.2005.015

Rayleigh–Marangoni–Bénard instability of a ferrofluid layer in a vertical magnetic field

M. Hennenberg, B. Weyssow, S. Slavtchev, V. Alexandrov and Th. Desaive
Journal of Magnetism and Magnetic Materials 289 268 (2005)
https://doi.org/10.1016/j.jmmm.2004.11.076

THE ADJOINT PROBLEM IN THE PRESENCE OF A DEFORMED SURFACE: THE EXAMPLE OF THE ROSENSWEIG INSTABILITY ON MAGNETIC FLUIDS

ADRIAN LANGE
International Journal of Modern Physics B 16 (08) 1155 (2002)
https://doi.org/10.1142/S0217979202010105

Coupling between Marangoni and Rosensweig instabilities

M. Hennenberg, B. Weyssow, S. Slavtchev and J. C. Legros
The European Physical Journal Applied Physics 16 (3) 217 (2001)
https://doi.org/10.1051/epjap:2001212

Wave number of maximal growth in viscous magnetic fluids of arbitrary depth

Adrian Lange, Bert Reimann and Reinhard Richter
Physical Review E 61 (5) 5528 (2000)
https://doi.org/10.1103/PhysRevE.61.5528