The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
R. Bourbonnais , J. Kertész , D. E. Wolf
J. Phys. II France, 1 5 (1991) 493-500
This article has been cited by the following article(s):
15 articles
Evidence for Power-Law Dominated Noise in Vacuum DepositedCaF2
D. R. Luhman and R. B. Hallock Physical Review Letters 92 (25) (2004) https://doi.org/10.1103/PhysRevLett.92.256102
Statistical characterization of thermally evaporated roughCaF2films
D. R. Luhman and R. B. Hallock Physical Review E 70 (5) (2004) https://doi.org/10.1103/PhysRevE.70.051606
Fractal analysis of sampled profiles: Systematic study
C. Castelnovo, A. Podestà, P. Piseri and P. Milani Physical Review E 65 (2) 021601 (2002) https://doi.org/10.1103/PhysRevE.65.021601
Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics
Timothy Halpin-Healy and Yi-Cheng Zhang Physics Reports 254 (4-6) 215 (1995) https://doi.org/10.1016/0370-1573(94)00087-J
Fractals in Science
János Kertész and Tamás Vicsek Fractals in Science 89 (1994) https://doi.org/10.1007/978-3-642-77953-4_4
Exact scaling in surface growth with power-law noise
Chi-Hang Lam and Leonard M. Sander Physical Review E 48 (2) 979 (1993) https://doi.org/10.1103/PhysRevE.48.979
Growth Patterns in Physical Sciences and Biology
János Kertész NATO ASI Series, Growth Patterns in Physical Sciences and Biology 304 77 (1993) https://doi.org/10.1007/978-1-4615-2852-4_9
Fractals in surface growth with power-law noise
C -H Lam and L M Sander Journal of Physics A: Mathematical and General 25 (3) L135 (1992) https://doi.org/10.1088/0305-4470/25/3/009
Universality in surface growth: Scaling functions and amplitude ratios
Jacques G. Amar, and Fereydoon Family Physical Review A 45 (8) 5378 (1992) https://doi.org/10.1103/PhysRevA.45.5378
Multifractality of growing surfaces
Albert-László Barabási, Roch Bourbonnais, Mogens Jensen, et al. Physical Review A 45 (10) R6951 (1992) https://doi.org/10.1103/PhysRevA.45.R6951
Kinetic roughening in a model of sedimentation of granular materials
Zoltán Csahók Physical Review A 46 (8) 4577 (1992) https://doi.org/10.1103/PhysRevA.46.4577
A model for temporal fluctuations of the surface width; a stochastic one-dimensional map
Albert-L Barabasi Journal of Physics A: Mathematical and General 24 (17) L1013 (1991) https://doi.org/10.1088/0305-4470/24/17/009
Probability distribution of the interface width in surface roughening: analogy with a Levy flight
S Havlin, S V Buldyrev, H E Stanley and G H Weiss Journal of Physics A: Mathematical and General 24 (16) L925 (1991) https://doi.org/10.1088/0305-4470/24/16/008
Kinetic roughening with power-law waiting time distribution
Lei-H Tang, J Kertesz and D E Wolf Journal of Physics A: Mathematical and General 24 (19) L1193 (1991) https://doi.org/10.1088/0305-4470/24/19/011
Ballistic deposition with power-law noise: A variant of the Zhang model
Sergey V. Buldyrev, Shlomo Havlin, Janos Kertész, H. Eugene Stanley and Tamas Vicsek Physical Review A 43 (12) 7113 (1991) https://doi.org/10.1103/PhysRevA.43.7113