The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
N. Mordant , J.-F. Pinton , F. Chillà
J. Phys. II France, 7 11 (1997) 1729-1742
This article has been cited by the following article(s):
34 articles
Effect of local flow geometry on particle pair dispersion angle
B. L. Español, M. Noseda, P. J. Cobelli and P. D. Mininni Physical Review Fluids 10 (4) (2025) https://doi.org/10.1103/PhysRevFluids.10.044501
Statistical patterns of deformation localization during plastic flow in the AMg6 alloy
Denis Efremov, Sergei Uvarov, Lev Spivak and Oleg Naimark Letters on Materials 10 (1) 38 (2020) https://doi.org/10.22226/2410-3535-2020-1-38-42
Small-scale anisotropy induced by spectral forcing and by rotation in non-helical and helical turbulence
Donato Vallefuoco, Aurore Naso and Fabien S. Godeferd Journal of Turbulence 19 (2) 107 (2018) https://doi.org/10.1080/14685248.2017.1400667
Precise measurements of torque in von Karman swirling flow driven by a bladed disk
Aryesh Mukherjee, Sergei Lukaschuk, Yuri Burnishev, Gregory Falkovich and Victor Steinberg Journal of Turbulence 19 (8) 647 (2018) https://doi.org/10.1080/14685248.2018.1494833
Influence of polymer additives on turbulence in von Karman swirling flow between two disks. II
Yuri Burnishev and Victor Steinberg Physics of Fluids 28 (3) (2016) https://doi.org/10.1063/1.4942401
Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing
Yuri Burnishev and Victor Steinberg Physical Review E 92 (2) (2015) https://doi.org/10.1103/PhysRevE.92.023001
Torque and pressure fluctuations in turbulent von Karman swirling flow between two counter-rotating disks. I
Yuri Burnishev and Victor Steinberg Physics of Fluids 26 (5) (2014) https://doi.org/10.1063/1.4873201
Numerical study of impeller-driven von Kármán flows via a volume penalization method
S Kreuzahler, D Schulz, H Homann, Y Ponty and R Grauer New Journal of Physics 16 (10) 103001 (2014) https://doi.org/10.1088/1367-2630/16/10/103001
Influence of inter‐disc space on the turbulent flow between two rotating discs
Maher Raddaoui International Journal of Numerical Methods for Heat & Fluid Flow 23 (4) 662 (2013) https://doi.org/10.1108/09615531311323809
Onset and universality of turbulent drag reduction in von Karman swirling flow
Yuri Burnishev and Victor Steinberg EPL (Europhysics Letters) 100 (2) 24001 (2012) https://doi.org/10.1209/0295-5075/100/24001
Laboratory Dynamo Experiments
Gautier Verhille, Nicolas Plihon, Mickael Bourgoin, Philippe Odier and Jean-François Pinton Space Science Reviews 152 (1-4) 543 (2010) https://doi.org/10.1007/s11214-009-9546-1
Normalized kinetic energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence
Pierre-Philippe Cortet, Pantxo Diribarne, Romain Monchaux, et al. Physics of Fluids 21 (2) (2009) https://doi.org/10.1063/1.3073745
The von Kármán Sodium experiment: Turbulent dynamical dynamos
Romain Monchaux, Michael Berhanu, Sébastien Aumaître, et al. Physics of Fluids 21 (3) (2009) https://doi.org/10.1063/1.3085724
Structural-scaling transitions and universality of fluctuation statistics under plastic deformation of metals
I.A. Panteleev, O.B. Naimark and C. Froustey Computational Continuum Mechanics 2 (3) 70 (2009) https://doi.org/10.7242/1999-6691/2009.2.3.24
Planetary Magnetism
Gautier Verhille, Nicolas Plihon, Mickael Bourgoin, Philippe Odier and Jean-François Pinton Space Sciences Series of ISSI, Planetary Magnetism 33 543 (2009) https://doi.org/10.1007/978-1-4419-5901-0_16
Turbulence modeling of the Von Kármán flow: Viscous and inertial stirrings
Sébastien Poncet, Roland Schiestel and Romain Monchaux International Journal of Heat and Fluid Flow 29 (1) 62 (2008) https://doi.org/10.1016/j.ijheatfluidflow.2007.07.005
Elastic turbulence in von Karman swirling flow between two disks
Teodor Burghelea, Enrico Segre and Victor Steinberg Physics of Fluids 19 (5) (2007) https://doi.org/10.1063/1.2732234
Acoustical technique for Lagrangian velocity measurement
Nicolas Mordant, Pascal Metz, Jean-François Pinton and Olivier Michel Review of Scientific Instruments 76 (2) 025105 (2005) https://doi.org/10.1063/1.1844452
Distribution of Injected Power Fluctuations in Electroconvection
Tibor Tóth-Katona and J. T. Gleeson Physical Review Letters 91 (26) (2003) https://doi.org/10.1103/PhysRevLett.91.264501
Magnetohydrodynamics measurements in the von Kármán sodium experiment
Mickaël Bourgoin, Louis Marié, François Pétrélis, et al. Physics of Fluids 14 (9) 3046 (2002) https://doi.org/10.1063/1.1497376
Investigating a stretched vortex with ultrafast two-dimensional ultrasonic speckle velocimetry
S. Manneville, L. Sandrin and M. Fink Physics of Fluids 13 (6) 1683 (2001) https://doi.org/10.1063/1.1370388
Dramatic rigidification of a peptide-decorated lamellar phase
N. Tsapis, and W. Urbach Physical Review E 63 (4) 041903 (2001) https://doi.org/10.1103/PhysRevE.63.041903
Scattering of sound by a vorticity filament: An experimental and numerical investigation
Sébastien Manneville, Philippe Roux, Mickaël Tanter, et al. Physical Review E 63 (3) 036607 (2001) https://doi.org/10.1103/PhysRevE.63.036607
Measurement of Lagrangian Velocity in Fully Developed Turbulence
N. Mordant, P. Metz, O. Michel and J.-F. Pinton Physical Review Letters 87 (21) (2001) https://doi.org/10.1103/PhysRevLett.87.214501
Dynamo and Dynamics, a Mathematical Challenge
Jacques Léorat, P. Lallemand, J.L. Guermond and F. Plunian Dynamo and Dynamics, a Mathematical Challenge 25 (2001) https://doi.org/10.1007/978-94-010-0788-7_4
Scaling properties of the streamwise component of velocity in a turbulent boundary layer
G. Ruiz-Chavarria, S. Ciliberto, C. Baudet and E. Lévêque Physica D: Nonlinear Phenomena 141 (3-4) 183 (2000) https://doi.org/10.1016/S0167-2789(00)00028-2
Random Roughness of Boundary Increases the Turbulent Convection Scaling Exponent
S. Ciliberto and C. Laroche Physical Review Letters 82 (20) 3998 (1999) https://doi.org/10.1103/PhysRevLett.82.3998
Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect. I. Shallow water
Christophe Coste, Fernando Lund, and Makoto Umeki Physical Review E 60 (4) 4908 (1999) https://doi.org/10.1103/PhysRevE.60.4908
Power fluctuations in a closed turbulent shear flow
Jean-François Pinton, Peter Holdsworth and Raúl Labbé Physical Review E 60 (3) R2452 (1999) https://doi.org/10.1103/PhysRevE.60.R2452
Intermittency in the closed flow between coaxial corotating disks
J.F. Pinton, F. Chillà and N. Mordant European Journal of Mechanics - B/Fluids 17 (4) 535 (1998) https://doi.org/10.1016/S0997-7546(98)80009-5
Is concentrated vorticity that important?
A. Tsinober European Journal of Mechanics - B/Fluids 17 (4) 421 (1998) https://doi.org/10.1016/S0997-7546(98)80003-4
Advection of a magnetic field by a turbulent swirling flow
P. Odier, J.-F. Pinton, and S. Fauve Physical Review E 58 (6) 7397 (1998) https://doi.org/10.1103/PhysRevE.58.7397
Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas
A. Tsinober Lecture Notes in Physics, Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas 511 83 (1998) https://doi.org/10.1007/BFb0106954
Experimental study of vorticity filaments in a turbulent swirling flow
B. Dernoncourt, J.-F. Pinton and S. Fauve Physica D: Nonlinear Phenomena 117 (1-4) 181 (1998) https://doi.org/10.1016/S0167-2789(97)00309-6