Numéro |
J. Phys. II France
Volume 1, Numéro 8, August 1991
|
|
---|---|---|
Page(s) | 995 - 1012 | |
DOI | https://doi.org/10.1051/jp2:1991122 |
References of J. Phys. II France 1 995-1012
- For a general reference see : Statistical Mechanics of Membranes and Surfaces, Eds D Nelson, T. Piran and S Weinberg (World Scientific, New Jersey, 1988)
-
Canham P B , J Theor B
ol 26 (1970) 61 , Helfrich W , Z Naturforsch 28c (1973) 693, Deuling H J and Helfrich W., J Phys France 37 (1976) 1335 [CrossRef] [EDP Sciences] , Evans E A , B
ophys J 30 (1980) 265 , Jenkins J T , J Math B
ology 4 (1977) 149 , Peterson M A , Mol Cryst L
q Cryst 127 (1985) 257 and J Math Phys 26 (1985) 711 We dropped the Gaussian curvature term as it is independent of the vesicle shape
- Sackmann E , Duwe H P and Engelhardt H , Faraday Discuss Chem Soc 81 (1986) , Evans E. and Rawicz W , Phys Rev Lett. 64 (1990) 2094 [CrossRef] [PubMed] , Berndl K., KAs J., Lipovsky R., Sackmann E and Seiffert U , submitted to Europhys Lett
- Evans E , in abstract of Self-Assembling Molecular Materials Conference, Princeton, May 1990 This experiment provided the original motivation for investigating the van der Waals interaction
- Miao L , Fourcade B , Rao M., Wortis M and Zia R K. P , preprint
- Seifert U , Berndl K and Lipovsky R., preprint
-
Svetina S and Zeks B , J Eur. B
ophys 17 (1989) 101
- For reviews see Israelachvilli J N., Intermolecular and Surface Forces (Academic, Orlando, 1985) and Mahanty J and Ninham B W., Dispersion Forces (Academic, London, 1971)
-
Lis L J , McAlister M , Fuller N , Rand R P. and Parsegian V A , J. B
ophys 37 (1982) 657 , Harbich W and Helfrich W., Chem. Phys L
p
ds 36 (1984) 39
-
Cowley A C , Fuller N L , Rand R P and Parsegian V A , B
ochem 17 (1978) 3163
-
Parsegian V A , Fuller N and Rand R P , Proc Natl Acad Sc
76 (1979) 2750
- Helfrich W., Z Naturforsch. 33a (1978) 305
-
This is estimated from the current-density across a membrane J(
) = P
(
) where P is the permeability and
(
) the concentration difference across the membrane at the point
on the membrane surface The solvent current I at time t is then
with the integral extending over the surface The change in vesicle volume
is
with
the solvent atomic volume The mean square of the volume fluctuations is
with S the vesicle area If the concentration fluctuations have a correlation length
and a correlation time
then
Our estimate for the time t when
follows if we choose for
Å,
,
Å3,
1/Å3 (typical microscopic values). For the vesicle we choose
and
and for the permeability
cm/s (see Stryer L., Biochemistry (W H Freeman, New York, 1988) p. 291)
- Landau L D and Lifshitz E M , Fluid Mechanics (Pergamon Press, New York, 1975) p 242
- De Gennes P G , Rev Mod Phys 57 (3) (1985) 827 We are borrowing a method described in this article
- Lord Rayleigh, Proc London Math. Soc 10 (1878) 4
-
Helfrich W and Harbich W , Chem
ca Scr
pta 25 (1985) 32
- Berndl K., Kas J , Lipovsky R , Sackmann E. and Seiffert U , submitted to Europhys Lett
- Evans E and Shalah R., Mechanics and Thermodynamics of Biomembranes (Crc Press, Boca Raton, Fla, 1980)
- Lipowsky R and Leibler S , Phys. Rev Lett. 56 (1986) 2541 [CrossRef] [PubMed] , Erratum 59 (1987) ; Lipowsky R and Fisher M E , Phys. Rev Lett 57 (1986) 2711
- Johnny J F and De Gennes P G , J Phys France 47 (1986) 121 [CrossRef] [EDP Sciences]