Numéro
J. Phys. II France
Volume 2, Numéro 3, March 1992
Page(s) 371 - 382
DOI https://doi.org/10.1051/jp2:1992133
References of J. Phys. II France 2 371-382
  1. Deuling H.J., Helfrich W., J. Phys. France 37 (1976) 1335 [CrossRef] [EDP Sciences]; Svetina S. and Zeks B., Biomed. Biochem. Acta. 43 (1983) 86; Sackmann E., Duwe H.-P. and Engelhardt H., Faraday Discuss. Chem. Soc. 81 (1986) 281 [CrossRef] [PubMed].
  2. Smith G.S., Sirota E.B., Safinya C.R., Plano R.J. and Clark N.A., J. Chem. Phys. 92 (1990) 4519 [CrossRef].
  3. Nelson D.R. and Peliti L., J. Phys. France 48 (1987) 1085 [CrossRef] [EDP Sciences].
  4. de Gennes P.G., C.R. Acad. Sci France 304 (1987) 259.
  5. Geoger J.H., Singh A., Price R.R., Schnur J.M., Yager P. and Schoen P.E., J. Am. Chem. Soc. 109 (1987) 6169 [CrossRef].
  6. Rudolph A.S., Ratna B.R. and Kahn B., to be published in Nature.
  7. Alberts B., Bray D., Lewis J., Raff M., Roberts K. and Watson J.D., Molecular Biology of the Cell, (Garland Publishing, N.Y., 1989) Chap. 10. In fact the problems raised by biological microtubules are more complex because these systems are usually not in thermodynamic equilibirum.
  8. Helfrich W. and Prost J., Phys. Rev. A 38 (1988) 3065 [CrossRef] [PubMed].
  9. Zhong-can Ou-Yang and Ji-xing Liu, Phys. Rev. Lett. 65 (1990) 1679 [CrossRef] [PubMed].
  10. Needham D. and Evans E., J. Phys. Chem. 91 (1987) 4219 [CrossRef].
  11. Dierker S.B., Pindak R. and Meyer R.B., Phys. Rev. Lett. 56 (1986) 1819 [CrossRef] [PubMed].
  12. Lubensky T.C. and MacIntosh F. (preprint).
  13. See for example, Spivak, M. A Comprehensive Introduction to Differential Geometry (Publish or Perish, Berkeley, 1979); in Liquid Crystals the connection between disclination strength and topology has been exploited first in nematics: Nabarro F., Fundamental aspects of dislocation theory, Nbs Spec. Publ. 317 (1970).
  14. Palffy-Muhoray P., private communication.
  15. Ovrut B. A. and Thomas S., Phys. Rev. D 43 (1991) 1314 [CrossRef] [MathSciNet].
  16. Nelson D.R. and Halperin B.I., Phys. Rev. 19 (1979) 2457.
  17. Pindak R., Moncton D.E., Davey S.C. and Goodby J.W., Phys. Rev. Lett. 46 (1981) 1135 [CrossRef].
  18. Helfrich W., Z. Naturforsch 28a (1973) 693; J. Phys. France 47 (1986) 321.
  19. Yager P., Schoen P.E., Davis C., Rice R.R. and Singh A., Chem. Phys. Lipids 48 (1988) 215 [CrossRef] [PubMed].
  20. Mutz M. and Bensimon D. (preprint).
  21. The experimentally observed $\mu = 1/{\sqrt{2}}$ requires the existence of spontaneous curvature if the minimization is to be performed at constant volume and area (see [20, 9]).
  22. The spin connection is related to the Gaussian curvature by $\sqrt{g}\:\textrm{det}\:K = \epsilon^{ab} D_{a}A_{b}$ where $\epsilon^{ab}$ is the anti-symmetric tensor.