Numéro
J. Phys. II France
Volume 2, Numéro 3, March 1992
Page(s) 425 - 451
DOI https://doi.org/10.1051/jp2:1992142
References of J. Phys. II France 2 425-451
  1. Luzatti V., in Biological Membranes, Chapman D. Ed. 1 (Academic Press New York, 1968) p. 71 ; Mariani P., Luzatti V. and Delacroix H. J., J. Mol. Biol. 204 (1988) 165 [CrossRef] [PubMed] ; Fontell K., Liquid Crystals and Plastic Crystals, G. W. Gray and P. Winson Eds. 2 (Ellis Harwood, Chicester, 1974) p. 80; Larsson K., Z. Phys. Chem. 56 (1973) 173; Kekicheff P. and Cabane B., J. Phys. France 48 (1987) 1571 [CrossRef] [EDP Sciences].
  2. Thomas E. L., Alward D. B., Kinning D. J., Martin D. C., Handlin D. L. and Fetters L. J., Macromolecules 19 (1986) 2197 [CrossRef] ; Hasegawa H., Tanaka K., Yamasalii K. and Hashimoto T., Macromolecules 20 (1987) 1651 [CrossRef] ; Thomas E. L., Reffner J. R. and Bellare J., J. Phys. Colloq. France 51 (1990) C7-363.
  3. Bouligand Y., J. Phys. Colloq. France 51 (1990) C7-35.
  4. See for instance : Physics of Amphiphilic Layers, J. Meunier, D. Langevin and N. Boccara Eds. (Springer, Berlin, 1987).
  5. See for instance : Tardieu A., Thesis Orsay (1972) ; Anderson D., Thesis University of Minnesota (1986) ; Charvolin J. and Sadoc J. F., J. Phys. France 48 (1987) 1559 [CrossRef] [EDP Sciences] ; Hyde S. T., J. Phys. Chem. 93 (1989) 1458 [CrossRef].
  6. Canham P. B., J. Theor. Biol, 26 (1970) 61 ; Helfrich W., Z. Naturforsch. 28C (1973) 693 ; Deuling H. J. and Helfrich W., J. Phys. France 37 (1976) 1335 [CrossRef] [EDP Sciences] ; Evans E. A., Biophys. J. 30 (1980) 265 [PubMed] ; Jenkins J. T., J. Math. Biology 4 (1977) 149; Peterson M. A., Mol. Cryst. Liq. Cryst. 127 (1985) 257 [CrossRef] and J. Math. Phys. 26 (1985) 711.
  7. See for instance : Nitsche J. C. C., Lectures on Minimal Surfaces, 1 (Cambridge University Press, 1989) ; Anderson D. M., Davis H. T., Nitsche J. C. C., Adv. Chem. Phys. 77 (Interscience New York, 1990) p. 337 ; Fomenko A. T., The Plateau Problem I and Ii (Gordon Breach, New York, 1989).
  8. For a table of minimal surfaces and their symmetry see : Koch E. and Fischer W., Acta Cryst. A 46 (1990) 33 [CrossRef] and references therein.
  9. Barois P., Erdam D. and Hyde S. T., J. Phys. Colloq. France 51 (1990) C7-25.
  10. Lidin S. and Hyde K., J. Phys. Colloq. France 48 (1987) 1585 [CrossRef]. The degeneracy is also known for the D, H and Clp Schwartz surfaces and the G, S $^{\prime}_{-}$ S $^{\prime\prime}$ Schoen surfaces.
  11. Karcher H., Manus Math. 62 (1988) 83 [MathSciNet].
  12. Hoffman D. A., J. Phys. Colloq. France 51 (1990) C7-197.
  13. Mitov M., C.R. Acad. Bulg. Sci. 31 (1970) 513.
  14. Helfrich W., Liq. Cryst. 6 (1989) 1647 [CrossRef].
  15. Helfrich W. and Rennschuh H., J. Phys. Colloq. France 51 (1990) C7-189.
  16. For a review : Statistical Mechanics of Membranes and Surfaces (Jerusalem Winter School), D. N. Nelson, T. Piran and S. Weinberg Eds. (World Scientific, Singapore, 1989).
  17. See : Safinya C. R. et al., Phys. Rev. Lett. 57 (1986) 2718 [CrossRef] [PubMed], and references therein.
  18. Huse D. A. and Leibler S. J., J. Phys. France 49 (1988) 605 [CrossRef] [EDP Sciences].
  19. Porte G., Marignan J., Bassereau P. and May R., J. Phys. France 49 (1988) 511 [CrossRef] [EDP Sciences] ; Porte G., Appell J., Bassereau P. and Marignan J., J. Phys. France 50 (1990) 1335 [CrossRef].
  20. Anderson D. M., J. Phys. France 51 (1990) C7-1.
  21. We are doing the calculation for a fixed number of surfactant molecules in the bilayer, in which case there is no surface tension contribution (by the Schulman criterion). See : de Gennes P. G. and Taupin C., J. Phys. Chem. 86 (1982) 2294 [CrossRef]. The result remains true in the presence of thermal fluctuations, as shown by David F. and Leibler S., J. Phys. Ii 1 (1991) 959 [CrossRef]. If the P surface is in chemical equilibrium with surfactant molecules in solution or with micelles, then in principle a chemical potential should be added which would be of the form of a surface tension term. Measurements of the static form factor by X-ray diffraction of the L$_{\alpha}$ phase (ref. [17]) can however only be interpreted if one does not include such a surface tension term. A possible reason is that the equilibration time between micelles and the surfactant layer is so long that for the time scales of scattering probes we are effectively in a constant area ensemble. Since light or X-ray scattering are the main tools for measuring the excitation spectrum, we will restrict ourselves to the constant area ensemble.
  22. Ashcroft N. W. and Mermin N. D., Solid-State Physics, Chap. 10, 11 (Hrw-Saunders College, Philadelphia, 1976).
  23. Kinsler L. E., Frey A. R., Coppens A. B. and Sanders J. V., Fundamentals of Acoustics, Chap. 10 (Wiley New York, 1982).
  24. Reference [22] Chap. 22.
  25. See : David F. in reference [16].
  26. For discussion of elastic stability of crystals see : Born M. and Huang K., Dynamical Theory of Crystal Lattices (Cambridge, 1954).
  27. Ross M., Ph. D. Thesis, Stanford.
  28. Cates M., J. Phys. Colloq. France 51 (1990) C7-73.
  29. Wohlgemuth M., Diplomarbeit, Rheinishe Friedrich-Wilhelms Universität Bonn (1980).
  30. The first two terms in equation (4.8) are known (Ref. [16]). The third term was computed by solving the heat diffusion equation on a sphere.
  31. Golubovic L., Phys. Rev. Lett. 65 (1990) 1963 [CrossRef] [PubMed] ; see also : Toner J., Phys. Rev. Lett. 64 (1990) 1741 [CrossRef] [PubMed].
  32. Nallet F., Roux D. and Prost J., J. Phys. France 50 (1989) 3147 [CrossRef] [EDP Sciences].