Numéro
J. Phys. II France
Volume 2, Numéro 11, November 1992
Page(s) 2011 - 2024
DOI https://doi.org/10.1051/jp2:1992248
References of J. Phys. II France 2 2011-2024
  1. Faetti S., Mol. Cryst. Liq. Cryst. 179 (1990) 217 [CrossRef].
  2. Faetti S., Physics of Liquid Crystalline Materials, I.C. Khoo and F. Simoni Eds. (Gordon and Breach, 1982) p.301.
  3. Yokoyama H., Mol. Cryst. Liq. Cryst. 108 (1988) 317.
  4. Jerome B., Rep. Prog. Phys. 54 (1991) 391 [CrossRef].
  5. Nehring J., Kmetz A.R., Sheffer T.J., J. Appl. Phys. 47 (1976) 850 [CrossRef].
  6. Yang K.H., Rosenblatt C., Appl. Phys. Lett. 43 (1983) 62 [CrossRef].
  7. Yokoyama H., Van Sprang H.A., J. Appl. Phys. 57 (1985) 4520 [CrossRef].
  8. Bernasconi J., Strassler S., Zeller H.R., Phys. Rev. A 22 (1980) 276 [CrossRef].
  9. Parson J.D., J. Phys. France 37 (1976) 1187 [CrossRef] [EDP Sciences].
  10. Sluckin T.J., Texeira P., to be published.
  11. Rapini A., Papoular M., J. Phys. Colloq. France 30 (1969) C4-54.
  12. Chiarelli P., Faetti S., Fronzoni L., J. Phys. France 44 (1983) 1061 [CrossRef] [EDP Sciences].
  13. Chiarelli P., Faetti S., Fronzoni L., Phys. Lett. 101A (1984) 31.
  14. Nobili M., Lazzeri C., Schirone A., Faetti S., Mol. Cryst. Liq. Cryst. 212 (1992) 97 [CrossRef].
  15. Rosenblatt C., J. Phys. France 45 (1984) 1087 [CrossRef] [EDP Sciences].
  16. Di Lisi G., Rosenblatt C., Griffin A.C., Uma Hari, Liq. Cryst. 7 (1990) 359.
  17. Berreman D.W., Phys. Rev. Lett. 28 (1972) 1683 [CrossRef].
  18. de Gennes P.G., The Physics of Liquid Crystals (Oxford University Press, 1974).
  19. Barbero G., Durand G., J. Phys. Ii France 1 (1991) 651 [EDP Sciences].
  20. Faetti S., Phys. Rev. A 36 (1987) 408 [CrossRef] [PubMed].
  21. Monkade M., Boix M., Durand G., Europhys. Lett. 5 (1988) 697 [CrossRef].
  22. Cognard J., Mol. Cryst. Liq. Cryst. Suppl. 1 78 (1982) 1.
  23. Yokoyama H., Kobayashi S., Kamei H., J. Appl. Phys. 56 (1984) 2645 [CrossRef].
  24. Jerome B., Phys. Rev. A 42 (1990) 6032 [CrossRef] [PubMed].
  25. The total energy per unit length along the x-axis, of a x-uniform sample caracterized by a uniform easy axis $\theta_{e}$, $\forall_{x}$ $\in$ (0,$\lambda$) and having. $\theta$(x,0)= 0 is given by $\frac{Fu}{\lambda}$ = $\frac{1}{2}$ k $\frac{\theta^{2}_{su}}{e}$ + $\frac{1}{2}$wu( $\theta_{su}$ - $\theta_{e}$)2 , where $\theta_{su}$ = $\theta_{u}$(-e) and wu is the anchoring energy of the considered x-uniform sample. Of course in this case $\theta_{u}$ depends linearly on y. The minimum of (22) w.r.t. $\theta_{su}$ is reached for $\theta_{su}$ = $\frac{\theta_{e}}{1 + (\textit{L}_{u}/e)}$,where Lu = k/wu
  26. Komitov L., Sparavigna A., Strigazzi A., Mol. Cryst. Liq. Cryst. (to be published).
  27. Barbero G., Beica T., Alexe-Ionescu A.L., Moldovan R., Liq. Cryst. (to be published).
  28. Kleman M., Points, lignes, parois, (Les Edition de Physique, Les Ulis, 1977).
  29. Petrovski I.G., Lectures on the Theory of Integral Equations (Mir Publishers Moscow, 1975).