Numéro
J. Phys. II France
Volume 3, Numéro 2, February 1993
Page(s) 227 - 243
DOI https://doi.org/10.1051/jp2:1993125
References of J. Phys. II France 3 227-243
  1. For a recent review, see : Halperin A., Tirrell M., Lodge T. P., Adv. Poly. Sci. 31 (1992) 100.
  2. For a review, see : Patel S., Tirrell M., Ann. Rev. Phys. Chem. 40 (1989).
  3. Alexander S., J. Phys. France 38 (1977) 983 [CrossRef] [EDP Sciences] ; De Gennes P. G., Macromolecules 13 (1980) 1069 [CrossRef].
  4. Pryamitsyn V. A., Borisov O. V., Zhulina E. B., Birshtein T. M., Modern Problems of Physical Chemistry of Solutions (Donish and Leningrad University, 1987) p. 62 ; Milner S. T., Witten T. A., Cates M. E., Europhys. Lett. 5 (1988) 413 [CrossRef].
  5. Barnett K., Cosgrove T., Vincent B., Burgess A., Crowley T., King T., Turner J., Tadros T., Polymer 22 (1981) 283 ; Crowley T., Ph. D. Thesis (Oxford, 1981) ; Cosgrove T., Heath T., Ryan K., Crowley T., Macromolecules 20 (1987) 2879 [CrossRef].
  6. Auvray L., Auroy P., Neutron, X-Ray and Light Scattering, P. Lindner and Th. Zemb Eds (Elsevier Science Publishers B. V., 1991) p. 199.
  7. Cosgrove T., Heath T. G., Phipps J. S., Richardson R. M., Macromolecules 24 (1991) 94 [CrossRef]; Field J. B., Toprakcioglu C., Ball R. C., Stanley H. B., Dai L., Barford W., Penfold J., Smith G., Hamilton W., Macromolecules 25 (1992) 434 [CrossRef]; Guiselin O., Lee L. T., Farnoux B., Lapp A., J. Chem. Phys. 95 (1991) 6 [CrossRef]; Kent M. S., Lee L. T., Rondelez F., preprint ; Satija S. K., Ankner J. F., Majkrzak C. F., Mansfield T., Beaucage G., Stein R. S., Iyengar D. R., Mccarthy T. J., preprint.
  8. Auroy P., Mir Y., Auvray L., Phys. Rev. Lett. 69 (1992) 93 [CrossRef] [PubMed].
  9. Auvray L., C.R. Acad. Sc. Paris, Ser. 302 (1986) 859; See also reference [6].
  10. This is also an argument in favour of uncorrect normalization for explaining the slight difference of the values of $\phi$s and $\gamma$ when they are obtained under contrast matching condition or with the contrast variation method (see Sect. 2.2).
  11. Auroy P., Auvray L., Léger L., Phys. Rev. Lett. 66 (1991) 719 [CrossRef] [PubMed].
  12. All this discussion about the meaning of the two corrections can be extended exactly in the same way to the linear and to the cubic shapes. The same conclusion would be drawn.
  13. Witten T. A., Leibler L., Pincus P., Macromolecules 23 (1990) 824 [CrossRef].
  14. This is a rough approximation. Indeed, it would be necessary to take into account some size distribution of the correlated volumes since the density profile is not a step. This would modify the Lorentzian behavior at small q. This second-order effect is neglected.
  15. $\tau$ is a.dimensionless parameter, analogous to $\phi$s $\tau$ > $\phi$s corresponds to a depletion layer and $\tau$ < $\phi$s to an adsorption layer. The slope of the density profile at z = 0 is $\tau$ - $\phi$s/h