J. Phys. II France
Volume 3, Numéro 3, March 1993
Page(s) 271 - 278
References of J. Phys. II France 3 271-278
  1. Willmarth W. W., Ann. Rev. Fluid Mech. 7 (1975) 13-38 [CrossRef].
  2. George W. K., Beuther P. D. and Arndt R. E. A., J. Fluid Mech. 148 (1984) 155-191 [CrossRef].
  3. Batchelor G. K., Proc. Cambridge Philos. Soc. 47 (1951) 359-374 [MathSciNet].
  4. Kraichnan R. H., J. Ac. Soc. Am. 28 (1956) 64-72 [MathSciNet], 378-390.
  5. Bradshaw P. and Koh Y. M., Phys. Fluids 24 (1981) 777 [CrossRef], and references therein.
  6. Brachet M. E., Fluid Dyn. Res. 8 (1991) 1-8 [CrossRef].
  7. Siggia E. D., J. Fluid Mech. 107 (1981) 375-406 [CrossRef].
  8. Brachet M., C. R. Acad. Sci. Paris 311(Ii) (1990) 775-780.
  9. She Z.S., Jackson E. and Orszag S.A., Nature 344 (1990) 226-228 [CrossRef].
  10. Vincent A. and Menneguzi M., J. Fluid Mech. 225 (1991) 1-20 [CrossRef].
  11. Douady S., Couder Y. and Brachet M. E., Phys. Rev. Lett. 67 (1991) 983-986 [CrossRef] [PubMed].
  12. Lauchle G. C. and Daniels M. A., Phys. Fluids 30 (1987) 3019-3024 [CrossRef].
  13. Zandbergen P. J. and Dijkstra D., Ann. Rev. Fluid Mech. 19 (1987) 465-491 [CrossRef].
  14. Intense vorticity concentrations displaying waves and vortex bursting were visualized with gas bubbles and studied in detail in rotating turbulent flows by Hopfinger E. J., Browand F. K. and Gagne Y., J. Fluid Mech. 125 (1982) 505-534 [CrossRef]; Hopfinger E. J. and Browand F. K., Nature 295 (1982) 393-395 [CrossRef].
  15. The order of magnitude of density fluctuations within the axial vortex being very small, the deflection of the laser beam is mostly generated by tiny gas bubbles which are advected within the core of the vortex.
  16. Métais O, and Lesieur M. , J. Fluid Mech. 239 (1992) 157-194 [MathSciNet].
  17. It is not realistic to use a simple model of a tube-like vortical structure (stationary axisymmetric vortex solutions of the Euler equation or exact time-dependent axisymmetric vortex solutions of the Navier-Stokes equation), to estimate the pressure field distributions. First, vortical stuctures are generated from fully 3D-flows on a very short time-scale. Second, these simple models have velocity-increments within r linear in r, whereas velocity-increments of a 3D turbulent flow are in r$^\alpha$, with $\alpha$ = 1/3 in Kolmogorov picture and a distributed around 1/3 in experimental measurements. One has thus to invoke either time-dependence or a fancy spatial distribution which will completely modify the pressure scaling. The velocity-gradients being badly approximated, the above simple models must be quite off the mark for predictions about the pressure field.
  18. Castaing B., Gagne Y. and Marchand M., "Log-similarity for turbulent flows" (preprint 1992).