J. Phys. II France
Volume 4, Numéro 9, September 1994
Page(s) 1477 - 1499
References of J. Phys. II France 4 1477-1499
  1. Ekwall P., Advances in Liquid Crystals, G. M. Brown Ed. (Academic, New York, 1975).
  2. Brochard F. and de Gennes P.-G., Pramana Suppl. 1 (1975) 1.
  3. Nallet F., Roux D. and Prost J., J. Phys. France 50 (1989) 3147 [CrossRef] [EDP Sciences].
  4. Nallet F., Roux D. and Milner S. T., J. Phys. France 51 (1990) 2333 [CrossRef] [EDP Sciences].
  5. Kahlweit M., Strey R. and Firman P., J. Phys. Chem. 91 (1986) 671 [CrossRef].
  6. Ott A., Urbach W., Langevin D., Ober R. and Waks M., Europhys. Lett 12 (1990) 395 [CrossRef].
  7. Fabre P., Casagrande C., Veyssié M., Cabuil V. and Massar R., Phvs. Rev. Lett. 64 (1990) 539 [CrossRef].
  8. Martin P. C., Parodi O. and Pershan P. S., Phys. Rev. A 6 (1972) 2401 [CrossRef].
  9. Fabre P., Quilliet C., Veyssié M., Nallet F., Roux D., Cabuil V. and Massait R., Europhys. Lett. 20 (1992) 229 [CrossRef].
  10. de Gennes P.-G., J. Phys. Colloq. France 30 (1969) C4-65.
  11. Helfrich W., Z. Natui forsch. 33a (1978) 305.
  12. In what follows, we do not take into account the crumpling that may arise from the short wavelength undulations of the membrane. Its relevance in the surfactant concentration fluctuation mechanism is described in : Lubensky T. C., Prost J. and Ramaswamy S., J. Phys. France 51 (1990) 933 [CrossRef] [EDP Sciences].
  13. Ponsinet V., Fabre P., Veyssié M. and Auvray L., J. Phys. Ii France 3 (1993) 1021 [EDP Sciences].
  14. Roux D. and Safinya C. R., J. Phys. France 49 (1988) 307 [CrossRef] [EDP Sciences].
  15. Xin Wen and Meyer R. B., J. Phys. France 50 (1989) 3043 [CrossRef] [EDP Sciences].
  16. Permeation should also be considered in principle when the wave vector q is parallel to the layers (i.e. qz = 0) ; it affects the relaxation fre uq ency of the transverse shear mode for wave vectors of the order of, or greater than $q^{\ast}_\textrm{shear}\sqrt{\eta/\zeta K\rho}$ and the undulation mode relaxation frequency above $q^{\ast}_\textrm{und} = \sqrt{2/\zeta\eta}$. With reasonable estimates for the parameters (see Refs. [17, 18] for the permeation coefficient $\zeta$), these cross-over wave vectors $q\:^{\ast}$ are orders of magnitude larger than light scattering wave vectors; neglecting permeation for such orientations of the wave vector is thus definitely reasonable.
  17. Chan W. K. and Webb W. W., J. Phys. France 42 (1981) 1007 [CrossRef] [EDP Sciences].
  18. Oswald P. and Allain M., J. Phys. France 46 (1985) 831 [CrossRef] [EDP Sciences].
  19. Forster D., Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions (W. A. Benjamin Inc., Reading, 1975).
  20. The complete set of data may be found in : Quilliet C., thèse de l'université Pierre-et-Marie-Curie, Paris (unpublished).
  21. Quilliet C., Fabre P. and Veyssié M., J. Phys. Ii France 3 (1993) 1371 [EDP Sciences].
  22. Singh M., Ober R. and Kléman M., J. Phys. Chem. 97 (1993) 11108 [CrossRef].
  23. Ligoure C., Bouglet G. and Porte G., Phys. Rev. Lett. 71 (1993) 3600 [CrossRef] [PubMed].
  24. Ficheux M.-F., Bellocq A.-M. and Nallet F., unpublished results.
  25. Brooks J. T., Marques C. M. and Cates M. E., J. Phys. Ii France 1 (1991) 673 [EDP Sciences] [CrossRef].
  26. Podgornik R., Europhys. Lett. 21 (1993) 245 [CrossRef].
  27. Cahn J., J. Chem. Phys. 66 (1977) 3667 [CrossRef].