Numéro
J. Phys. II France
Volume 5, Numéro 8, August 1995
Page(s) 1155 - 1163
DOI https://doi.org/10.1051/jp2:1995174
References of J. Phys. II France 5 1155-1163
  1. See e.g., Lipowsky R., Nature 349 (1991) 475 [CrossRef] [PubMed], Statistical Mechanics of Membranes and Surfaces, D.R. Nelson, T. Piran, and S. Weinberg, Eds. (World Scientific, Singapore, 1989).
  2. See e.g, Micelles, Membranes, Microemulsions, and Monolayers, A. Ben-Shaul, W. Gelbart and D. Roux, Eds. (Springer-Verlag, New York, 1994)
  3. Porte G., Marignan J., Bassereau P and May, R, J. Phys France 49 (1988) 511 [CrossRef] [EDP Sciences]; Cates M. E, Roux D, Andelman D., Milner S. T. and Safran S. A, Europhys. Lett. 5 (1988) 733 [CrossRef].
  4. Safinya C. R. et al., Phys. Rev. Lett. 57 (1986) 2718 [CrossRef] [PubMed]; Safinya C. R., Sirota E. B, Roux D. and Smith G. S, Phys. Rev Lett. 62 (1989) 1134 [CrossRef] [PubMed].
  5. Roux D. and Safinya C R., J. Phys. France 49 (1988) 307 [CrossRef] [EDP Sciences].
  6. Caillé A., C.R. Acad. Set. Ser. B 274 (1972) 891.
  7. Porte G., et al., Europhys. Lett. 7 (1988) 713 [CrossRef].
  8. Nallet F., Roux D. and Milner S.T., J. Phys. France 51 (1990) 2333 [CrossRef] [EDP Sciences].
  9. Als-Nielsen J., et al., Phys. Rev. B 22 (1980) 312 [CrossRef], Kaganer V.M., Ostrovskii B.I. and de Jeu W.H., Phys. Rev. A 44 (1991) 8158 [CrossRef] [PubMed].
  10. Nachaliel E., Keller E. N., Davidov D. and Boeffel C., Phys. Rev. A 43 (1991) 2897 [CrossRef] [PubMed].
  11. Holyst R., Tweet D.J. and Sorensen L.B., Phys. Rev. Lett. 65 (1990) 2153 [CrossRef] [PubMed].
  12. Ramaswamy S., Prost J, Cai W. and Lubensky T. C., Europhys Lett. 23 (1993) 271 [CrossRef]; Ramaswamy S., Prost J and Lubensky T.C., Europhys. Lett., in press.
  13. Helfrich W., Z. Naturforsch. 33a (1978) 305.
  14. The single layer form factor considered was the Fourier transform of a simple square density wave with the membrane thickness $\delta$ fixed at the expected value $\delta = \psi_{m}d$ (where $\psi_{m}$ is the known volume fraction of the membrane). We note that the form factor (which has a first minimum near $2\pi/\delta$) is a smooth decreasing function in the small-angle regime where the structure factor is analysed
  15. The height-height correlation function for the discrete harmonic model used in the numerical work was (see Ref. [17]): $G_{o}(\textrm{r}) = \eta_{1}d^{2}/(2\pi^{2})\int^{\infty}_{0}\textrm{d}x/(x(1 +...
... \{1 - J_{0}((2x)^{1/2}\vert\textrm{r}\vert/\xi)[(1 + x^{2})^{1/2} - x]^{2/3}\}$.
  16. This follows from the definition of $\xi$ and the prediction of the Helfrich theory (Ref. [ 131) that the interlayer compressibility $B = 1.39(\kappa_{\textrm{B}}T)^{2}d/[\kappa(d - \delta)^{4}]$
  17. Lei Ning, Ph.D. Thesis, Physics Department, Rutgers, The State University of New Jersey (1993); Lei N., Safinya C.R and Bruinsma R.F., submitted to Phys. Rev. E.
  18. Gunter L., Imry Y. and Lajzerowicz J., Phys. Rev. A 22 (1980) 1733 [CrossRef].
  19. Dutta P and Sinha S. K., Phys. Rev. Lett. 47 (1981) 50 [CrossRef].
  20. Cai W., Lubensky T. C, Nelson P. and Powers T., J. Phys. Ii France 4 (1994) 931 [EDP Sciences] [CrossRef].