Numéro |
J. Phys. II France
Volume 6, Numéro 12, December 1996
|
|
---|---|---|
Page(s) | 1797 - 1824 | |
DOI | https://doi.org/10.1051/jp2:1996161 |
References of J. Phys. II France 6 1797-1824
- Lipowsky R., Nature 349 (1991) 475 [CrossRef] [PubMed].
- Bloom M., Evans E. and Mouritsen O., Q. Rev. Biophys. 24 (1991) 293 [PubMed].
- Berndl K., et al., Europhys. Lett. 13 (1990) 659 [CrossRef].
-
K
s J. and Sackmann E., Biophys. J. 60 (1991) 825 [PubMed].
- Evans E. and Rawicz W., Phys. Rev. Lett. 64 (1990) 2094 [CrossRef] [PubMed].
- Wiese W., Harbich W. and Helfrich W., J. Phys.: Cond. Matter 4 (1992) 1647 [CrossRef].
- Helfrich W., Z. Naturforsch. 28c (1973) 693.
- Evans E., Biophys. J. 14 (1974) 923 [PubMed].
- Deuling H. and Helfrich W., J. Phys. France 37 (1976) 1335 [CrossRef] [EDP Sciences].
- Svetina S. and Zeks B., Eur. Biophys. J. 17 (1989) 101 [PubMed].
- Seifert U., Berndl K. and Lipowsky R., Phys. Rev. A 44 (1991) 1182 [CrossRef] [PubMed].
- Miao L., et al., Phys. Rev. A 43 (1991) 6843 [CrossRef] [PubMed].
-
Miao L., Seifert U., Wortis M. and D
bereiner H.-G., Phys. Rev. E 49 (1994) 5389 [CrossRef].
-
Wintz W., D
bereiner H.-G. and Seifert U., Europhys. Lett. 33 (1996) 403 [EDP Sciences] [CrossRef].
- Mutz M. and Bensimon D., Phys. Rev. A 43 (1991) 4525 [CrossRef] [PubMed].
- Fourcade B., Mutz M. and Bensimon D., Phys. Rev. Lett. 68 (1992) 2551 [CrossRef] [PubMed].
- Michalet X. and Bensimon D., J. Phys. Ii France 5 (1995) 263 [EDP Sciences] [CrossRef].
- Michalet X., Bensimon D. and Fourcade B., Phys. Rev. Lett. 72 (1994) 168 [CrossRef] [PubMed].
- Michalet X. and Bensimon D., Science 269 (1995) 666 [CrossRef] [PubMed].
- Willmore T., Total curvature in Riemannian geometry (Ellis Horwood, Chicester, 1982).
- Duplantier B., Physica A 168 (1990) 179 [MathSciNet].
- Duplantier B., Goldstein R., Romero-Rochin V. and Pesci A., Phys. Rev. Lett. 65 (1990) 508 [CrossRef] [PubMed].
- Seifert U., Phys. Rev. Lett. 66 (1991) 2404 [CrossRef] [PubMed].
- Seifert U., J. Phys. A: Math. Gen. 24 (1991) L573 [CrossRef].
- Fourcade B., J. Phys. Ii France 2 (1992) 1705 [EDP Sciences] [CrossRef].
- Julicher F., Seifert U. and Lipowsky R., J. Phys. Ii France 3 (1993) 1681 [EDP Sciences] [CrossRef].
- Julicher F., Seifert U. and Lipowsky R., Phys. Rev. Lett. 71 (1993) 452 [CrossRef] [PubMed].
- Pinkall U. and Sterling I., Math. Intelligencer 9 (1987) 38.
- Hsu L., Kusner R. and Sullivan J., Experimental Math. 1 (1992) 191 [MathSciNet].
- Kusner R., Pacific J. Math. 138 (1989) 317 [MathSciNet].
- Thomsen G., Abh. Math. Sem. Univ. Hamburg 3 (1923) 31.
-
Blaschke W., Vorlesungen
ber Differentialgeometrie (Springer, Berlin, 1929).
- Lawson H., Ann. Math. 92 (1970) 335 [MathSciNet].
- Karcher H., Pinkall U. and Sterling I., J. Differential Geometry 28 (1988) 169 [MathSciNet].
- Willmore T., Anal. Scient. ale Univ. Iasi (Sect. Ia) 11 (1965) 493.
- Note that definition (9) differs from those used in references [24,26] by a minus sign.
- Ashcroft N. and Mermin N., Solid State Physics (Cbs Publishing Asia Ltd., Philadelphia, 1976).
- This "handle" has two holes since the limit shape is of topological genus g = 2.
- Note that no additional Willmore surfaces can be generated by using inversion centers located in the exterior of L. This fact follows from the inversion symmetry of L.
-
The limit
leads to the Lawson surface which is not part of any conformal mode.
- Brochard F. and Lennon J., J. Phys. France 36 (1975) 1035 [CrossRef] [EDP Sciences].
- Evans E. and Needham D., J. Phys. Chem. 91 (1987) 4219 [CrossRef].
- Duwe H., Kus J. and Sackmann E., J. Phys. France 51 (1990) 945 [CrossRef] [EDP Sciences].
- Mutz M. and Helfrich W., J. Phys. France 51 (1990) 991 [CrossRef] [EDP Sciences].
- All known surfaces which are solutions of curvature models for vesicle shapes have at least two mirror planes and obey equation (31) by symmetry. In principle, C2h-symmetry would be sufficient to satisfy equation (31) ( C2h-symmetry corresponds to a two-fold axis and an additional mirror plane perpendicular to this axis.).
- do Carmo M., Differential Geometry of Curves and Surfaces (Prentice-Hall, New Jersey, 1976).
- Nitsche J., Lectures on minimal surfaces (Cambridge University Press, Cambridge, 1989).
-
Equation (C.4) shows that any surface which obey
= 0, is also a stationary solution of the Willmore functional with
However, no surface with
is known which does not correspond to a minimal surface [28].
- Spivak M., Differential Geometry (Publish or Perish, Houston, 1979).