Numéro
J. Phys. II France
Volume 7, Numéro 2, February 1997
Page(s) 343 - 361
DOI https://doi.org/10.1051/jp2:1997129
References of J. Phys. II France 7 343-361
  1. Flory P.J., Principles of Polymer Chemistry (Ithaca, 1953).
  2. des Cloizeaux J. and Jannink G., Polymers in solution (Clarendon, 1990).
  3. de Gennes P.G., Scaling Concepts in Polymer Physics (Ithaca, 1979).
  4. Micaeli I., Overbeek J.Th.G. and Voorn M.J., J. Pol. Sci. 23 (1957) 443 [CrossRef]; Hall D.G., J. Chem. Soc. Faraday Trans. 77 (1981) 1121 [CrossRef]; Groot R.D., J. Chem. Phys. 94 (1991) 5083 [CrossRef].
  5. Khokhlov A.R. and Nyrkova I.A., Macromolecules 25 (1992) 1493 [CrossRef].
  6. Borue V.Y. and Erukhimovich I.Ya., Macromolecules 21 (1988) 3240 [CrossRef].
  7. Joanny J.F. and Liebler L., J. Phys. France 51 (1990) 545 [CrossRef] [EDP Sciences].
  8. Belloni L., Olvera de la Cruz M., Delsanti M., Dalbiez J.P., Spalla 0. and Drifford M., Il Nuovo Cimento 16 (1994) 727 [CrossRef].
  9. Olvera de la Cruz M., Belloni L., Delsanti M., Dalbiez J.P., Spalla 0. and Drifford M., J. Chem. Phys. 103 (1995) 5781 [CrossRef].
  10. Wittmer J., Johner A. and Joanny J.F., J. Phys. Ii France 5 (1995) 635 [EDP Sciences] [CrossRef].
  11. Manning G.S., J. Chem. Phys. 51 (1969) 954.
  12. See e.g. Guggenheim E.A., Thermodynamics (North Holland, 1957).
  13. Lekkerkerker H.N.W., Pusey P.N., Stroobants A. and Warren P.B., Europhys. Lett. 20 (1992) 559 [CrossRef].
  14. See e.g. Landau L.D. and Lifshitz E.M., Statistical Physics, 3rd ed., part 1 (Pergamon, 1980).
  15. Clegg S.M., Hall D.G., Robb I.D., Williams P.A., Ber. Bunsen-Gesellsehaft 100 (1996) 780.
  16. Barrat J.L. and Joanny J.F., Europhys. Lett. 24 (1993) 333 [CrossRef]; J. Phys. Ii France 4 (1994) 1089; Witten T.A. and Pincus P., J. Phys. Ii France 4 (1994) 1103 [EDP Sciences] [CrossRef].
  17. Edwards S.F., Proc. Phys. Soc. London 88 (1966) 1265; See also Doi M. and Edwards S.F., Theory of Polymer Dynamics (Oup, 1986).
  18. Hansen J.P. and McDonald I.R., Theory of Simple Liquids (Acadamic, 1976).
  19. The loop expansion is that described by des Cloizeaux [2], applied to point ions in solution; see also Hansen and McDonald [18].
  20. A formally infinite counterterm $\frac{1}{2}\int {{\rm {d}}^3 {\rm {k}}/} (2\pi )^3 4\pi l_{\rm {B}} /({\rm {k}}^2 + \gamma ^2 )\sum {\rho _a } Z_a^2$ has to be subtracted from the formally divergent integral in equation (39) to get the Debye-Hiickel result; this can be viewed as a chemical potential renormalization corresponding to the removal of the electrostatic self energy of the ions.
  21. It is possible to linearise the polyelectrolyte analogue of the Poisson-Boltzmann equation: Borukhov I., Andelman D. and Orland H., Europhys. Lett. 32 (1995) 499 [CrossRef].
  22. Joanny J.F. and Pincus P., Polymer 21 (1980) 274 [CrossRef].
  23. See also the recent developments in Fisher M.E. and Levin Y., Phys. Rev. Lett. 71 (1993) 3826 [CrossRef] [PubMed]; Levin Y., Li X. and Fisher M.E., Phys. Rev. Lett. 73 (1994) 2716 [CrossRef] [PubMed].