Numéro |
J. Phys. II France
Volume 7, Numéro 2, February 1997
|
|
---|---|---|
Page(s) | 343 - 361 | |
DOI | https://doi.org/10.1051/jp2:1997129 |
References of J. Phys. II France 7 343-361
- Flory P.J., Principles of Polymer Chemistry (Ithaca, 1953).
- des Cloizeaux J. and Jannink G., Polymers in solution (Clarendon, 1990).
- de Gennes P.G., Scaling Concepts in Polymer Physics (Ithaca, 1979).
- Micaeli I., Overbeek J.Th.G. and Voorn M.J., J. Pol. Sci. 23 (1957) 443 [CrossRef]; Hall D.G., J. Chem. Soc. Faraday Trans. 77 (1981) 1121 [CrossRef]; Groot R.D., J. Chem. Phys. 94 (1991) 5083 [CrossRef].
- Khokhlov A.R. and Nyrkova I.A., Macromolecules 25 (1992) 1493 [CrossRef].
- Borue V.Y. and Erukhimovich I.Ya., Macromolecules 21 (1988) 3240 [CrossRef].
- Joanny J.F. and Liebler L., J. Phys. France 51 (1990) 545 [CrossRef] [EDP Sciences].
- Belloni L., Olvera de la Cruz M., Delsanti M., Dalbiez J.P., Spalla 0. and Drifford M., Il Nuovo Cimento 16 (1994) 727 [CrossRef].
- Olvera de la Cruz M., Belloni L., Delsanti M., Dalbiez J.P., Spalla 0. and Drifford M., J. Chem. Phys. 103 (1995) 5781 [CrossRef].
- Wittmer J., Johner A. and Joanny J.F., J. Phys. Ii France 5 (1995) 635 [EDP Sciences] [CrossRef].
- Manning G.S., J. Chem. Phys. 51 (1969) 954.
- See e.g. Guggenheim E.A., Thermodynamics (North Holland, 1957).
- Lekkerkerker H.N.W., Pusey P.N., Stroobants A. and Warren P.B., Europhys. Lett. 20 (1992) 559 [CrossRef].
- See e.g. Landau L.D. and Lifshitz E.M., Statistical Physics, 3rd ed., part 1 (Pergamon, 1980).
- Clegg S.M., Hall D.G., Robb I.D., Williams P.A., Ber. Bunsen-Gesellsehaft 100 (1996) 780.
- Barrat J.L. and Joanny J.F., Europhys. Lett. 24 (1993) 333 [CrossRef]; J. Phys. Ii France 4 (1994) 1089; Witten T.A. and Pincus P., J. Phys. Ii France 4 (1994) 1103 [EDP Sciences] [CrossRef].
- Edwards S.F., Proc. Phys. Soc. London 88 (1966) 1265; See also Doi M. and Edwards S.F., Theory of Polymer Dynamics (Oup, 1986).
- Hansen J.P. and McDonald I.R., Theory of Simple Liquids (Acadamic, 1976).
- The loop expansion is that described by des Cloizeaux [2], applied to point ions in solution; see also Hansen and McDonald [18].
-
A formally infinite counterterm
has to be subtracted from the formally divergent integral in equation (39) to get the Debye-Hiickel result; this can be viewed as a chemical potential renormalization corresponding to the removal of the electrostatic self energy of the ions.
- It is possible to linearise the polyelectrolyte analogue of the Poisson-Boltzmann equation: Borukhov I., Andelman D. and Orland H., Europhys. Lett. 32 (1995) 499 [CrossRef].
- Joanny J.F. and Pincus P., Polymer 21 (1980) 274 [CrossRef].
- See also the recent developments in Fisher M.E. and Levin Y., Phys. Rev. Lett. 71 (1993) 3826 [CrossRef] [PubMed]; Levin Y., Li X. and Fisher M.E., Phys. Rev. Lett. 73 (1994) 2716 [CrossRef] [PubMed].