Numéro |
J. Phys. II France
Volume 4, Numéro 6, June 1994
|
|
---|---|---|
Page(s) | 893 - 911 | |
DOI | https://doi.org/10.1051/jp2:1994173 |
J. Phys. II France 4 (1994) 893-911
Flow induced instability of the interface between a fluid and a gel at low Reynolds number
V. Kumaran, G. H. Fredrickson and P. PincusDepartment of Chemical and Nuclear Engineering and Materials Department, University of California, Santa Barbara, CA 93106, U.S.A.
(Received 10 October 1993, received in final form 28 December 1993, accepted 21 February 1994)
Abstract
The stability of the interface between a gel of thickness
HR and a Newtonian fluid of thickness
R subjected to a linear shear flow is studied in the limit where inertial effects are negligible. The shear stress for the
gel contains an elastic part that depends on the local displacement field and a viscous component that depends on the velocity
field. The shear flow at the surface tends to destabilize the surface fluctuations, and the critical strain rate
, which is the minimum strain rate required for unstable fluctuations, is determined as a function of the dimensionless quantities
H,
, and
. Here
and
are the gel and fluid viscosities,
E is the gel elasticity,
is the surface tension of the gel - fluid interface and the strain rate
is scaled by (
). In the limit
, we find that
decreases proportional to
H-1 independent of
and
T. But at finite
H,
is strongly dependent on
and
T. For
, the interface is stable for all values of the strain rate for
, while there are unstable traveling waves for
. For
and
, we find that
for
T=0 and
for
. For
, the analysis indicates that
independent of
T for
. For
, the onset of instability depends strongly on the parameter
T. For
T = 0, the critical strain rate is finite in the limit
, while for
the critical strain rate diverges at a finite value of
H. This minimum
H decreases proportional to
for large
T. The instability is caused by the energy transfer from the mean flow to the fluctuations due to the work done by the mean
flow at the interface.
© Les Editions de Physique 1994