Numéro |
J. Phys. II France
Volume 3, Numéro 4, April 1993
|
|
---|---|---|
Page(s) | 547 - 555 | |
DOI | https://doi.org/10.1051/jp2:1993150 |
DOI: 10.1051/jp2:1993150
J. Phys. II France 3 (1993) 547-555
Université P. et M. Curie, Laboratoire de Modélisation en Mécanique associé au CNRS, Case 162, 4 Place Jussieu, 75252 Paris Cedex 05, France
05.40 - 61.40 - 82.70
© Les Editions de Physique 1993
J. Phys. II France 3 (1993) 547-555
The theta-point and critical point of polymeric fractals : a step beyond Flory approximation
Daniel LhuillierUniversité P. et M. Curie, Laboratoire de Modélisation en Mécanique associé au CNRS, Case 162, 4 Place Jussieu, 75252 Paris Cedex 05, France
(Received 16 October 1992, accepted in final form 22 December 1992)
Abstract
We propose a new form of free energy for polymeric fractals (chain-like, branched or membranes) based on self-similarity arguments
and on the existence of a maximum gyration radius. Results are obtained concerning the size exponents at the theta-point and
critical point. These two exponents depend on a single parameter only, for which a simple phenomenological expression is provided.
A very good fit is obtained with numerical or experimental results concerning linear and branched polymers. A comparison with
the Flory-de Gennes free-energy emphasizes the non mean-field features of the new free-energy.
05.40 - 61.40 - 82.70
© Les Editions de Physique 1993